Library Logo
Biotechnology of microbial enzymes : production, biocatalysis and industrial applications / [electronic resource] edited by Goutam Brahmachari ; co-editors: Arnold L. Demain, Jose L. Adrio. - London, UK : Academic Press : Elsevier, 2016. - 1 online resource (634 pages)

Includes index.

Includes bibliographical references and index.

Front Cover -- Biotechnology of Microbial Enzymes -- Copyright Page -- Dedication -- Contents -- List of Contributors -- Preface -- 1 Useful Microbial Enzymes-An Introduction -- 1.1 The Enzymes: A Class of Useful Biochemicals -- 1.2 Microbial Enzymes for Industry -- 1.3 Improvement of Enzymes -- 1.4 Discovery of New Enzymes -- 1.5 Concluding Remarks -- Acknowledgements -- References -- 2 Production, Purification, and Application of Microbial Enzymes -- 2.1 Introduction -- 2.2 Production of Microbial Enzymes -- 2.2.1 Enzyme Production in Industries -- 2.2.2 Industrial Enzyme Production Technology -- 2.2.2.1 Submerged Fermentation -- 2.2.2.2 Solid State Fermentation -- 2.3 Strain Improvements -- 2.3.1 Mutation -- 2.3.2 Recombinant DNA (rDNA) Technology -- 2.3.3 Protein Engineering -- 2.4 Downstream Processing/Enzyme Purification -- 2.5 Product Formulations -- 2.6 Global Enzyme Market Scenarios -- 2.7 Industrial Applications of Enzymes -- 2.7.1 Food Industry -- 2.7.1.1 Starch Industry -- 2.7.1.2 Baking Industry -- 2.7.1.3 Brewing Industry -- 2.7.1.4 Fruit Juice Industry -- 2.7.2 Textile Industry -- 2.7.3 Detergent Industry -- 2.7.4 Pulp and Paper Industry -- 2.7.5 Animal Feed Industry -- 2.7.6 Leather Industry -- 2.7.7 Biofuel From Biomass -- 2.7.8 Enzyme Applications in the Chemistry and Pharma Sectors -- 2.7.8.1 Speciality Enzymes -- 2.7.8.2 Enzymes in Personal Care Products -- 2.7.8.3 Enzymes in DNA-Technology -- 2.8 Concluding Remarks -- References -- 3 Solid State Fermentation for Production of Microbial Cellulases -- 3.1 Introduction -- 3.2 Solid State Fermentation (SSF) -- 3.2.1 Comparative Aspects of Solid State and Submerged Fermentations -- 3.2.2 Cellulase-Producing Microorganisms in SSF -- 3.2.3 Extraction of Microbial Cellulase in SSF -- 3.2.4 Measurement of Cellulase Activity in SSF -- 3.2.4.1 Filter Paper Activity (FPase). 3.2.4.2 Carboxymethyl Cellulase Activity (CMCase) -- 3.2.4.3 Xylanase Activity -- 3.2.4.4 -Glucosidase Activity -- 3.3 Lignocellulosic Residues/Wastes as Solid Substrates in SSF -- 3.4 Pretreatment of Agricultural Residues -- 3.4.1 Physical/Mechanical Pretreatments -- 3.4.1.1 Mechanical Comminution -- 3.4.1.2 Grinding/Milling/Chipping -- 3.4.2 Physico-Chemical Pretreatments -- 3.4.2.1 Steam Explosion (Autohydrolysis) -- 3.4.3 Chemical Pretreatments -- 3.4.4 Biological Pretreatment -- 3.5 Environmental Factors Affecting Microbial Cellulase Production in SSF -- 3.5.1 Water Activity/Moisture Content -- 3.5.2 Temperature -- 3.5.3 Mass Transfer Processes: Aeration and Nutrient Diffusion -- 3.5.3.1 Gas Diffusion -- 3.5.3.2 Nutrient Diffusion -- 3.5.4 Substrate Particle Size -- 3.5.5 Other Factors -- 3.6 Strategies to Improve Production of Microbial Cellulase -- 3.6.1 Metabolic Engineering and Strain Improvement -- 3.6.2 Recombinant Strategy (Heterologous Cellulase Expression) -- 3.6.2.1 Yeast Expression Systems -- 3.6.2.2 Bacterial Expression Systems -- 3.6.2.3 Plant Expression System -- 3.6.3 Mixed-Culture (Coculture) Systems -- 3.7 Fermenter (Bioreactor) Design for Cellulase Production in SSF -- 3.7.1 Tray Type Bioreactor -- 3.7.2 Rotary Drum Bioreactor -- 3.7.3 Packed Bed Bioreactor -- 3.7.4 Fluidized Bed Bioreactor -- 3.8 Biomass Conversion and Application of Microbial Cellulases -- 3.8.1 Textile Industry -- 3.8.2 Laundry and Detergents -- 3.8.3 Food and Animal Feed -- 3.8.4 Pulp and Paper Industry -- 3.8.5 Biofuels -- 3.9 Concluding Remarks -- Abbreviations -- References -- 4 Hyperthermophilic Subtilisin-Like Proteases From Thermococcus kodakarensis -- 4.1 Introduction -- 4.2 Two Subtilisin-Like Serine Proteases From Thermococcus kodakarensis KOD1 -- 4.3 Tk-Subtilisin -- 4.3.1 Ca2+-Dependent Maturation of Tk-Subtilisin. 4.3.2 Crystal Structures of Tk-Subtilisin -- 4.3.3 Requirement of Ca2+-Binding Loop for Folding -- 4.3.4 Ca2+ Ion Requirements for Hyperstability -- 4.3.5 Role of Tkpro -- 4.3.6 Role of the Insertion Sequences -- 4.3.7 Cold-Adapted Maturation Through Tkpro Engineering -- 4.3.8 Degradation of PrPSc by Tk-Subtilisin -- 4.3.9 Tk-Subtilisin Pulse Proteolysis Experiments -- 4.4 Tk-SP -- 4.4.1 Maturation of Pro-Tk-SP -- 4.4.2 Crystal Structure of Pro-S359A* -- 4.4.3 Role of proN -- 4.4.4 Role of the C-Domain -- 4.4.5 PrPSc Degradation by Tk-SP -- 4.5 Concluding Remarks -- Acknowledgments -- Abbreviations -- References -- 5 Enzymes from Basidiomycetes-Peculiar and Efficient Tools for Biotechnology -- 5.1 Introduction -- 5.2 Brown and White Rot Fungi -- 5.3 Isolation and Laboratory Maintenance of Wood Rot Basidiomycetes -- 5.4 Basidiomycetes as Producers of Enzymes Involved in Degradation of Lignocellulose Biomass -- 5.4.1 Enzymes Involved in the Degradation of Cellulose and Hemicelluloses -- 5.4.2 Enzymes Involved in Lignin Degradation -- 5.5 Production of Ligninolytic Enzymes by Basidiomycetes: Screening and Production in Laboratory Scale -- 5.6 General Characteristics of the Main Ligninolytic Enzymes with Potential Biotechnological Applications -- 5.6.1 Laccases -- 5.6.2 Peroxidases -- 5.7 Industrial and Biotechnological Applications of Ligninolytic Enzymes from Basidiomycetes -- 5.7.1 Application of Ligninolytic Enzymes in Delignification of Vegetal Biomass and Biological Detoxification for Biofuel P ... -- 5.7.2 Application of Ligninolytic Enzymes in the Degradation of Xenobiotic Compounds -- 5.7.3 Application of Ligninolytic Enzymes in the Degradation of Textile Dyes -- 5.7.4 Application of Ligninolytic Enzymes in Pulp and Paper Industry -- 5.8 Concluding Remarks -- Acknowledgments -- References. 6 Microbial Production and Molecular Engineering of Industrial Enzymes: Challenges and Strategies -- 6.1 Introduction -- 6.2 Strategies for Achieving High-Level Expression of Industrial Enzymes in Microorganisms -- 6.2.1 Strategies for High-Level Expression of Microbial Enzymes in E. coli -- 6.2.1.1 High-Level Expression of Enzymes by Transcriptional Regulation in E. coli -- 6.2.1.2 High-Level Expression of Enzymes by Translational Regulation in E. coli -- 6.2.1.3 Enhancement of the Expression of Enzymes by Different Protein Formations in E. coli -- 6.2.1.4 Improving Enzyme Production Yield by Fusion Proteins or Molecular Chaperones in E. coli -- 6.2.1.5 High-Level Expression of Enzymes by Codon Optimization in E. coli -- 6.2.1.6 Fermentation Optimization of Enzyme Production in E. coli -- 6.2.2 High-Level Expression of Microbial Enzymes in Bacilli -- 6.2.3 High-Level Expression of Microbial Enzymes in Lactic Acid Bacteria -- 6.2.4 High-Level Expression of Microbial Enzymes in Yeasts -- 6.2.4.1 High-Level Expression of Microbial Enzymes in P. pastoris -- 6.2.4.2 High-Level Expression of Microbial Enzymes in S. cerevisiae -- 6.2.4.3 High-Level Expression of Microbial Enzymes in Other Yeast Hosts -- 6.2.5 High-Level Expression of Microbial Enzymes in Filamentous Fungi -- 6.2.5.1 High-Level Expression of Microbial Enzymes in Aspergillus Species -- 6.2.5.2 High-Level Expression of Microbial Enzymes in Trichoderma Species -- 6.2.5.3 High-Level Expression of Microbial Enzymes in Other Filamentous Fungi Species -- 6.3 Molecular Engineering Strategies -- 6.3.1 Directed Evolution -- 6.3.2 Site-Directed Mutagenesis -- 6.3.3 Saturation Mutagenesis -- 6.3.4 Truncation -- 6.3.5 Fusion -- 6.4 Concluding Remarks -- References -- 7 Metagenomics and the Search for Industrial Enzymes -- 7.1 Introduction -- 7.2 The Dilemma Between Known, Engineered, or Novel Enzymes. 7.3 Metagenomics and Its Application to Enzyme Research -- 7.4 Success Stories of Na�ive and Direct Sequencing Screens for New Enzymes -- 7.5 Success Stories for Introducing Environmental Enzymes into the Market -- 7.6 Enzyme Search: Limitations of Metagenomics and Solutions -- 7.7 Concluding Remarks -- Acknowledgments -- References -- 8 The Pocket Manual of Directed Evolution: Tips and Tricks -- 8.1 Introduction -- 8.2 Methods to Generate DNA Diversity -- 8.2.1 Mutagenic Methods -- 8.2.1.1 Random Mutagenesis -- 8.2.1.2 Saturation Mutagenesis -- 8.2.2 DNA Recombination Methods -- 8.2.2.1 In Vitro Methods -- 8.2.2.1.1 Homology-Dependent Recombination Methods -- 8.2.2.1.2 Homology-Independent Recombination Methods -- 8.2.2.2 In Vivo Methods -- 8.3 Computational Tools -- 8.4 Functional Expression Systems -- 8.5 Mutant Library Exploration -- 8.5.1 Genetic Selection Methods -- 8.5.2 High-Throughput Screening (HTS) Assays -- 8.5.3 Ultrahigh-Throughput Screening Assays -- 8.6 Forthcoming Trends in Directed Evolution -- 8.7 Concluding Remarks -- Acknowledgments -- Abbreviations -- References -- 9 Insights into the Structure and Molecular Mechanisms of -Lactam Synthesizing Enzymes in Fungi -- 9.1 Introduction -- 9.1.1 Penicillin and Cephalosporin Biosynthesis: A Brief Overview -- 9.1.2 Genes Involved in Penicillin Biosynthesis -- 9.2 ACV Synthetase -- 9.2.1 The ACV Assembly Line -- 9.2.2 The Cleavage Function of the Integrated Thioesterase Domain -- 9.2.3 The Quality Control (Proofreading) Role of the Thioesterase Domain -- 9.2.4 ACV Analog Dipeptides and Tripeptides Synthesized by the ACVS in Vitro -- 9.3 Isopenicillin N Synthase -- 9.3.1 Binding and Lack of Cyclization of the LLL-ACV -- 9.3.2 The Iron-Containing Active Center -- 9.3.3 The Crystal Structure of IPNS -- 9.3.4 Oxidase and Oxygenase Activities of IPNS.

0128037466 9780128037461

GBB742854 bnb

018072379 Uk


Microbial enzymes--Biotechnology.
SCIENCE--Chemistry--Industrial & Technical.
TECHNOLOGY & ENGINEERING--Chemical & Biochemical.
Microbial enzymes--Biotechnology.


Electronic books.

TP248.65.E59

660.6/34
Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login