Library Logo

Sentiment analysis in social networks / (Record no. 247447)

000 -LEADER
fixed length control field 12019cam a2200625Ii 4500
001 - CONTROL NUMBER
control field ocn960458243
003 - CONTROL NUMBER IDENTIFIER
control field OCoLC
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20190328114817.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu---unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 161012s2017 mau ob 001 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency N$T
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency N$T
Modifying agency IDEBK
-- N$T
-- OPELS
-- UMI
-- YDX
-- OCLCF
-- TOH
-- UPM
-- STF
-- DEBBG
-- COO
-- OCLCQ
-- OTZ
-- OCLCQ
-- Z5A
-- IBE
-- OCLCQ
-- U3W
-- D6H
-- UOK
-- CEF
-- KSU
-- OCLCQ
-- NAM
-- WYU
-- OCLCQ
019 ## -
-- 961139135
-- 962390352
-- 962434519
-- 962786861
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780128044384
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0128044381
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780128044124
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 0128044128
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)960458243
Canceled/invalid control number (OCoLC)961139135
-- (OCoLC)962390352
-- (OCoLC)962434519
-- (OCoLC)962786861
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA76.9.N38
072 #7 - SUBJECT CATEGORY CODE
Subject category code COM x 042000
Source bisacsh
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3/12
Edition number 23
245 00 - TITLE STATEMENT
Title Sentiment analysis in social networks /
Medium [electronic resource]
Statement of responsibility, etc. edited by Federico Alberto Pozzi, Elisabetta Fersini, Enza Messina, Bing Liu.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Cambridge, MA :
Name of producer, publisher, distributor, manufacturer Morgan Kaufmann,
Date of production, publication, distribution, manufacture, or copyright notice 2017.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice �2017
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
588 0# - SOURCE OF DESCRIPTION NOTE
Source of description note Online resource, title from PDF title page (EBSCO, viewed October 15, 2016).
520 ## - SUMMARY, ETC.
Summary, etc. The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologiesProvides insights into opinion spamming, reasoning, and social network analysisShows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequencesServes as a one-stop reference for the state-of-the-art in social media analytics.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: ch. 1 Challenges of Sentiment Analysis in Social Networks: An Overview -- 1. Background -- 2. Sentiment Analysis in Social Networks: A New Research Approach -- 3. Sentiment Analysis Characteristics -- 3.1. Sentiment Categorization: Objective Versus Subjective Sentences -- 3.2. Levels of Analysis -- 3.3. Regular Versus Comparative Opinion -- 3.4. Explicit Versus Implicit Opinions -- 3.5. The Role of Semantics -- 3.6. Dealing with Figures of Speech -- 3.7. Relationships in Social Networks -- 4. Applications -- References -- ch. 2 Beyond Sentiment: How Social Network Analytics Can Enhance Opinion Mining and Sentiment Analysis -- 1. Introduction -- 2. Definitions and History of Online Social Networks -- 2.1. What Exactly Is an Online Social Network? -- 2.2. Brief History of Online Social Networks -- 3. Are Online Social Networks All the Same? Features and Metrics -- 3.1. Types of User-Generated Content -- 3.2. Types of Relationships Between Users.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Note continued: 3.3. Indexes and Metrics to Analyze Data Collected Through Online Social Networks -- 4. Psychological and Motivational Factors for People to Share Opinions and to Express Themselves on Social Networks -- 4.1. Need to Belong -- 4.2. Need for Cognition -- 4.3. Self-Presentation and Impression Management -- 5. From Sociology Principles to Social Networks Analytics -- 5.1. Tie Strengths -- 5.2. Homophily or Similarity Breeds Connection -- 5.3. Source Credibility -- 6. How Can Social Network Analytics Improve Sentiment Analysis on Online Social Networks? -- 6.1. What Is Social Network Analysis? -- 6.2. How to Integrate Social Network Analytics in Sentiment Analysis: Some Examples -- 7. Conclusion and Future Directions -- References -- ch. 3 Semantic Aspects in Sentiment Analysis -- 1. Introduction -- 2. Semantic Resources for Sentiment Analysis -- 2.1. Classical Resources on Sentiment.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Note continued: 2.2. Beyond the Polarity Valence: Emotion Lexica, Ontologies, and Psycholinguistic Resources -- 2.3. Social Media Corpora Annotated for Sentiment and Fine Emotion Categories -- 3. Using Semantics in Sentiment Analysis -- 3.1. Lexical Information -- 3.2. Distributional Semantics -- 3.3. Entities, Properties, and Relations -- 3.4. Concept-Level Sentiment Analysis: Reasoning with Semantics -- 4. Conclusions -- ch. 4 Linked Data Models for Sentiment and Emotion Analysis in Social Networks -- 1. Introduction -- 2. Marl: A Vocabulary for Sentiment Annotation -- 3. Onyx: A Vocabulary for Emotion Annotation -- 3.1. Onyx Extensibility: Vocabularies -- 3.2. Emotion Markup Language -- 4. Linked Data Corpus Creation for Sentiment Analysis -- 4.1. Sentiment Corpus -- 4.2. Emotion Corpus -- 5. Linked Data Lexicon Creation for Sentiment Analysis -- 5.1. Sentiment Lexicon -- 5.2. Emotion Lexicon -- 6. Sentiment and Emotion Analysis Services.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Note continued: 7. Case Study: Generation of a Domain-Specific Sentiment Lexicon -- 8. Conclusions -- Acknowledgments -- References -- ch. 5 Sentic Computing for Social Network Analysis -- 1. Introduction -- 2. Related Work -- 3. Affective Characterization -- 4. Applications -- 4.1. Troll Filtering -- 4.2. Social Media Marketing -- 4.3.A Model for Sentiment Classification in Twitter -- 5. Future Trends and Directions -- 6. Conclusion -- References -- ch. 6 Sentiment Analysis in Social Networks: A Machine Learning Perspective -- 1. Introduction -- 2. Polarity Classification in Online Social Networks: The Key Elements -- 3. Polarity Classification: Natural Language and Relationships -- 3.1. Leveraging Natural Language -- 3.2. Leveraging Natural Language and Relationships -- 4. Applications -- 5. Future Directions -- 6. Conclusion -- References -- ch. 7 Irony, Sarcasm, and Sentiment Analysis -- 1. Introduction -- 2. Irony and Sarcasm Detection -- 2.1. Irony Detection -- 2.2. Sarcasm Detection.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Note continued: 3. Figurative Language and Sentiment Analysis -- 3.1. Sentiment Polarity Classification at Evalita 2014 -- 3.2. Sentiment Analysis in Twitter at SemEval 2014 and 2015 -- 3.3. Sentiment Analysis of Figurative Language in Twitter at SemEval 2015 -- 4. Future Trends and Directions -- 5. Conclusions -- Acknowledgments -- References -- ch. 8 Suggestion Mining From Opinionated Text -- 1. Introduction -- 2. Sentiments and Suggestions -- 3. Task Definition and Typology of Suggestions -- 4. Datasets -- 5. Approaches for Suggestion Detection -- 5.1. Linguistic Observations in Suggestions -- 5.2. Detection of Suggestions for Improvements -- 5.3. Detection of Suggestions to Fellow Customers -- 6. Applications -- 7. Future Trends and Directions -- 8. Summary -- Acknowledgments -- References -- ch. 9 Opinion Spam Detection in Social Networks -- 1. Introduction -- 2. Related Work -- 3. Review Spammer Detection Leveraging Reviewing Burstiness -- 3.1. Burst Detection.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Note continued: 3.2. Spammer Detection Under Review Bursts -- 4. Detecting Campaign Promoters on Twitter -- 4.1. Campaign Promoter Modeling Using Typed Markov Random Fields -- 4.2. Inference -- 5. Spotting Spammers Using Collective Positive-Unlabeled Learning -- 5.1. Problem Definition -- 5.2. Collective Classification -- 5.3. Model Evaluation -- 5.4. Trends and Directions -- 6. Conclusion -- Acknowledgments -- References -- ch. 10 Opinion Leader Detection -- 1. Introduction -- 2. Problem Definition -- 3. Approaches -- 3.1. Measures Based on Network Structure -- 3.2. Methods Based on Interaction -- 3.3. Methods Based on Content Mining -- 3.4. Methods Based on Content and Interaction -- 4. Discussion -- 5. Conclusions -- References -- ch. 11 Opinion Summarization and Visualization -- 1. Introduction -- 2. Opinion Summarization -- 2.1. Challenges -- 2.2. Evaluation -- 2.3. Opinion Summarization Approaches -- 3. Opinion Visualization -- 3.1. Challenges for Opinion Visualization.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Note continued: 3.2. Text Genres and Tasks for Opinion Visualization -- 3.3. Opinion Visualization of Customer Feedback -- 3.4. Opinion Visualization of User Reactions to Large-Scale Events via Microblogs -- 3.5. Visualizing Opinions in Online Conversations -- 3.6. Current and Future Trends in Opinion Visualization -- 4. Conclusion -- References -- ch. 12 Sentiment Analysis with SpagoBI -- 1. Introduction to SpagoBI -- 2. Social Network Analysis with SpagoBI -- 2.1. Main Purpose -- 2.2. Features -- 2.3. Use Case -- 3. Algorithms Used -- 4. Conclusion -- ch. 13 SOMA: The Smart Social Customer Relationship Management Tool: Handling Semantic Variability of Emotion Analysis with Hybrid Technologies -- 1. Introduction -- 2. Definition of Sentiment and Emotion Mining -- 3. Previous Work -- 4.A Silver Standard Corpus for Emotion Classification in Tweets -- 5. General System -- 5.1. Hybrid Operable Platform for Language Management and Extensible Semantics -- 5.2. The Machine Learning Approach.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Note continued: 5.3. The Symbolic Approach -- 6. Results and Evaluation -- 6.1. Tweet Emotion Detection -- 6.2. Tweet Relevance -- 7. Conclusion -- Acknowledgments -- References -- ch. 14 The Human Advantage: Leveraging the Power of Predictive Analytics to Strategically Optimize Social Campaigns -- 1. Introduction -- 2. The Current Philosophy Around Sentiment Analysis -- 3. KRC Research's Digital Content and Sentiment Philosophy -- 3.1. Pretesting Is Crucial -- 3.2. Continuously Learn How to Improve -- 3.3. Use Scientific Sampling Rather Than Reviewing Every Piece of Content -- 3.4. Build Predictive Models -- 4. KRC Research's Sentiment and Analytics Approach -- 5. Case Study -- 5.1. Life Insurance Organization -- 6. Conclusion -- ch. 15 Price-Sensitive Ripples and Chain Reactions: Tracking the Impact of Corporate Announcements with Real-Time Multidimensional Opinion Streaming -- 1. Introduction -- 2. Architecture -- 2.1. Data Sources and Filters.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Note continued: 2.2. Core Natural Language Processing and Opinion Metrics -- 2.3. Opinion Metrics -- 2.4. Indexing -- 2.5. Real-Time Opinion Streaming -- 3. Multidimensional Opinion Metrics -- 3.1. Fine-Grained Multilevel Sentiment -- 3.2. Multidimensional Affect -- 3.3. Irrealis Modality -- 3.4.Comparisons -- 3.5. Topic Tagging -- 4. Discussion -- 5. Conclusion -- Acknowledgments -- References -- ch. 16 Conclusion and Future Directions.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Natural language processing (Computer science)
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computational linguistics.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Social networks.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element COMPUTERS
General subdivision Natural Language Processing.
Source of heading or term bisacsh
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computational linguistics.
Source of heading or term fast
Authority record control number (OCoLC)fst00871998
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Natural language processing (Computer science)
Source of heading or term fast
Authority record control number (OCoLC)fst01034365
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Social networks.
Source of heading or term fast
Authority record control number (OCoLC)fst01122678
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Pozzi, Federico Alberto,
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Fersini, Elisabetta,
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Messina, Enza,
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Liu, Bing,
Relator term editor.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Title Sentiment analysis in social networks.
Place, publisher, and date of publication Cambridge, MA : Morgan Kaufmann, 2017
International Standard Book Number 9780128044124
-- 0128044128
856 40 - ELECTRONIC LOCATION AND ACCESS
Materials specified ScienceDirect
Uniform Resource Identifier http://www.sciencedirect.com/science/book/9780128044124

No items available.

Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login