Library Logo
Normal view MARC view ISBD view

Data analysis : what can be learned from the past 50 years / [electronic resource]

by Huber, Peter J.
Material type: materialTypeLabelBookSeries: Wiley series in probability and statistics: Publisher: Hoboken, N.J. : Wiley, ©2011Description: 1 online resource (xiv, 210 pages) : illustrations.ISBN: 9781118018248; 1118018249; 9781118018262; 1118018265; 9781118018255; 1118018257; 128310931X; 9781283109314.Subject(s): Mathematical statistics -- History | Mathematical statistics -- Philosophy | Numerical analysis -- Methodology | Mathematical statistics -- History | Mathematical statistics -- Philosophy | Numerical analysis -- Methodology | MATHEMATICS -- Probability & Statistics -- General | Electronic books | Electronic booksOnline resources: Wiley Online Library
Contents:
What Is Data Analysis? -- Strategy Issues in Data Analysis -- Massive Data Sets -- Languages for Data Analysis -- Approximate Models -- Pitfalls -- Create Order in Data -- More Case Studies -- Wiley Series in Probability and Statistics.
Summary: "This book explores the many provocative questions concerning the fundamentals of data analysis. It is based on the time-tested experience of one of the gurus of the subject matter. Why should one study data analysis? How should it be taught? What techniques work best, and for whom? How valid are the results? How much data should be tested? Which machine languages should be used, if used at all? Emphasis on apprenticeship (through hands-on case studies) and anecdotes (through real-life applications) are the tools that Peter J. Huber uses in this volume. Concern with specific statistical techniques is not of immediate value; rather, questions of strategy - when to use which technique - are employed. Central to the discussion is an understanding of the significance of massive (or robust) data sets, the implementation of languages, and the use of models. Each is sprinkled with an ample number of examples and case studies. Personal practices, various pitfalls, and existing controversies are presented when applicable. The book serves as an excellent philosophical and historical companion to any present-day text in data analysis, robust statistics, data mining, statistical learning, or computational statistics"--Provided by publisher.Summary: "This book explores the many provocative questions concerning the fundamentals of data analysis"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

What Is Data Analysis? -- Strategy Issues in Data Analysis -- Massive Data Sets -- Languages for Data Analysis -- Approximate Models -- Pitfalls -- Create Order in Data -- More Case Studies -- Wiley Series in Probability and Statistics.

"This book explores the many provocative questions concerning the fundamentals of data analysis. It is based on the time-tested experience of one of the gurus of the subject matter. Why should one study data analysis? How should it be taught? What techniques work best, and for whom? How valid are the results? How much data should be tested? Which machine languages should be used, if used at all? Emphasis on apprenticeship (through hands-on case studies) and anecdotes (through real-life applications) are the tools that Peter J. Huber uses in this volume. Concern with specific statistical techniques is not of immediate value; rather, questions of strategy - when to use which technique - are employed. Central to the discussion is an understanding of the significance of massive (or robust) data sets, the implementation of languages, and the use of models. Each is sprinkled with an ample number of examples and case studies. Personal practices, various pitfalls, and existing controversies are presented when applicable. The book serves as an excellent philosophical and historical companion to any present-day text in data analysis, robust statistics, data mining, statistical learning, or computational statistics"--Provided by publisher.

"This book explores the many provocative questions concerning the fundamentals of data analysis"-- Provided by publisher.

Print version record.

There are no comments for this item.

Log in to your account to post a comment.
Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login