Library Logo
Normal view MARC view ISBD view

Numerical analysis of partial differential equations / [electronic resource]

by Lui, S. H. (Shaun H.).
Material type: materialTypeLabelBookSeries: Pure and applied mathematics (John Wiley & Sons : Unnumbered): Publisher: Hoboken, N.J. : Wiley, �2011Description: xiii, 487 pages : illustrations ; 27 cm.ISBN: 9780470647288; 0470647280; 9781118111109; 1118111109; 9781118111116; 1118111117; 9781118111130; 1118111133.Subject(s): Differential equations, Partial -- Numerical solutions | MATHEMATICS -- Mathematical Analysis | Differential equations, Partial -- Numerical solutions | Numerisches Verfahren | Partielle Differentialgleichung | Numerisches Verfahren | Partielle DifferentialgleichungOnline resources: Wiley InterScience
Contents:
Finite Difference. -- Second-Order Approximation for [delta] -- Fourth-Order Approximation for [delta] -- Neumann Boundary Condition -- Polar Coordinates -- Curved Boundary -- Difference Approximation for [delta] -- A Convection-Diffusion Equation -- Analysis of Discrete Operators -- Summary and Exercises -- Mathematical Theory of Elliptic PDEs -- Function Spaces -- Derivatives -- Sobolev Spaces -- Sobolev Embedding Theory -- Traces -- Negative Sobolev Spaces -- Some Inequalities and Identities -- Weak Solutions -- Linear Elliptic PDEs -- Some Definitions and Theorems -- Finite Elements. 3.1 Approximate Methods of Solution -- Finite Elements in 1D -- Finite Elements in 2D -- Inverse Estimate -- L2 and Negative-Norm Estimates -- A Posteriori Estimate -- Higher-Order Elements -- Quadrilateral Elements -- Numerical Integration -- Stokes Problem -- Linear Elasticity -- Numerical Linear Algebra -- Condition Numbers -- Classical Iterative Methods -- Krylov Subspace Methods -- Preconditioning -- Direct Methods -- Chebyshev Polynomials -- Spectral Methods -- Trigonometric Polynomials -- Fourier Spectral Method -- Orthogonal Polynomials -- Spectral Gakerkin and Spectral Tau Methods -- Spectral Collocation -- Polar Coordinates -- Neumann Problems -- Fourth-Order PDEs -- Evolutionary PDEs -- Finite Difference Schemes for Heat Equation -- Other Time Discretization Schemes -- Convection-Dominated equations -- Finite Element Scheme for Heat Equation -- Spectral Collocation for Heat Equation -- Finite Different Scheme for Wave Equation -- Dispersion -- Multigrid -- Two-Grid Method -- Practical Multigrid Algorithms -- Finite Element Multigrid -- Domain Decomposition -- Overlapping Schwarz Methods -- Projections -- Non-overlapping Schwarz Method -- Substructuring Methods -- Optimal Substructuring Methods -- Infinite Domains -- Absorbing Boundary Conditions -- Dirichlet-Neumann Map -- Perfectly Matched Layer -- Boundary Integral Methods -- Fast Multiple Method -- Nonlinear Problems -- Newton's Method -- Other Methods -- Some Nonlinear Problems -- Software -- Program Verification --
Summary: "This book provides a comprehensive and self-contained treatment of the numerical methods used to solve partial differential equations (PDEs), as well as both the error and efficiency of the presented methods. Featuring a large selection of theoretical examples and exercises, the book presents the main discretization techniques for PDEs, introduces advanced solution techniques, and discusses important nonlinear problems in many fields of science and engineering. It is designed as an applied mathematics text for advanced undergraduate and/or first-year graduate level courses on numerical PDEs"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Machine generated contents note: Preface. Acknowledgments. 1. Finite Difference. 1.1 Second-Order Approximation for [delta].1.2 Fourth-Order Approximation for [delta].1.3 Neumann Boundary Condition. 1.4 Polar Coordinates. 1.5 Curved Boundary. 1.6 Difference Approximation for [delta]2.1.7 A Convection-Diffusion Equation. 1.8 Appendix: Analysis of Discrete Operators. 1.9 Summary and Exercises. 2. Mathematical Theory of Elliptic PDEs. 2.1 Function Spaces. 2.2 Derivatives. 2.3 Sobolev Spaces. 2.4 Sobolev Embedding Theory. 2.5 Traces. 2.6 Negative Sobolev Spaces. 2.7 Some Inequalities and Identities. 2.8 Weak Solutions. 2.9 Linear Elliptic PDEs. 2.10 Appendix: Some Definitions and Theorems. 2.11 Summary and Exercises. 3. Finite Elements. 3.1 Approximate Methods of Solution. 3.2 Finite Elements in 1D.3.3 Finite Elements in 2D.3.4 Inverse Estimate. 3.5 L2 and Negative-Norm Estimates. 3.6 A Posteriori Estimate. 3.7 Higher-Order Elements. 3.8 Quadrilateral Elements. 3.9 Numerical Integration. 3.10 Stokes Problem. 3.11 Linear Elasticity. 3.12 Summary and Exercises. 4. Numerical Linear Algebra. 4.1 Condition Numbers. 4.2 Classical Iterative Methods. 4.3 Krylov Subspace Methods. 4.4 Preconditioning. 4.5 Direct Methods. 4.6 Appendix: Chebyshev Polynomials. 4.7 Summary and Exercises. 5. Spectral Methods. 5.1 Trigonometric Polynomials. 5.2 Fourier Spectral Method. 5.3 Orthogonal Polynomials. 5.4 Spectral Gakerkin and Spectral Tau Methods. 5.5 Spectral Collocation. 5.6 Polar Coordinates. 5.7 Neumann Problems5.8 Fourth-Order PDEs. 5.9 Summary and Exercises. 6. Evolutionary PDEs. 6.1 Finite Difference Schemes for Heat Equation. 6.2 Other Time Discretization Schemes. 6.3 Convection-Dominated equations. 6.4 Finite Element Scheme for Heat Equation. 6.5 Spectral Collocation for Heat Equation. 6.6 Finite Different Scheme for Wave Equation. 6.7 Dispersion. 6.8 Summary and Exercises. 7. Multigrid. 7.1 Introduction. 7.2 Two-Grid Method. 7.3 Practical Multigrid Algorithms. 7.4 Finite Element Multigrid. 7.5 Summary and Exercises. 8. Domain Decomposition. 8.1 Overlapping Schwarz Methods. 8.2 Projections. 8.3 Non-overlapping Schwarz Method. 8.4 Substructuring Methods. 8.5 Optimal Substructuring Methods. 8.6 Summary and Exercises. 9. Infinite Domains. 9.1 Absorbing Boundary Conditions. 9.2 Dirichlet-Neumann Map. 9.3 Perfectly Matched Layer. 9.4 Boundary Integral Methods. 9.5 Fast Multiple Method. 9.6 Summary and Exercises. 10. Nonlinear Problems. 10.1 Newton's Method. 10.2 Other Methods. 10.3 Some Nonlinear Problems. 10.4 Software. 10.5 Program Verification. 10.6 Summary and Exercises. Answers to Selected Exercises. References. Index.

Includes bibliographical references and index.

Preface. Acknowledgments -- Finite Difference. -- Second-Order Approximation for [delta] -- Fourth-Order Approximation for [delta] -- Neumann Boundary Condition -- Polar Coordinates -- Curved Boundary -- Difference Approximation for [delta] -- A Convection-Diffusion Equation -- Appendix: Analysis of Discrete Operators -- Summary and Exercises -- Mathematical Theory of Elliptic PDEs -- Function Spaces -- Derivatives -- Sobolev Spaces -- Sobolev Embedding Theory -- Traces -- Negative Sobolev Spaces -- Some Inequalities and Identities -- Weak Solutions -- Linear Elliptic PDEs -- Appendix: Some Definitions and Theorems -- Summary and Exercises -- Finite Elements. 3.1 Approximate Methods of Solution -- Finite Elements in 1D -- Finite Elements in 2D -- Inverse Estimate -- L2 and Negative-Norm Estimates -- A Posteriori Estimate -- Higher-Order Elements -- Quadrilateral Elements -- Numerical Integration -- Stokes Problem -- Linear Elasticity -- Summary and Exercises -- Numerical Linear Algebra -- Condition Numbers -- Classical Iterative Methods -- Krylov Subspace Methods -- Preconditioning -- Direct Methods -- Appendix: Chebyshev Polynomials -- Summary and Exercises -- Spectral Methods -- Trigonometric Polynomials -- Fourier Spectral Method -- Orthogonal Polynomials -- Spectral Gakerkin and Spectral Tau Methods -- Spectral Collocation -- Polar Coordinates -- Neumann Problems -- Fourth-Order PDEs -- Summary and Exercises -- Evolutionary PDEs -- Finite Difference Schemes for Heat Equation -- Other Time Discretization Schemes -- Convection-Dominated equations -- Finite Element Scheme for Heat Equation -- Spectral Collocation for Heat Equation -- Finite Different Scheme for Wave Equation -- Dispersion -- Summary and Exercises -- Multigrid -- Introduction -- Two-Grid Method -- Practical Multigrid Algorithms -- Finite Element Multigrid -- Summary and Exercises -- Domain Decomposition -- Overlapping Schwarz Methods -- Projections -- Non-overlapping Schwarz Method -- Substructuring Methods -- Optimal Substructuring Methods -- Summary and Exercises -- Infinite Domains -- Absorbing Boundary Conditions -- Dirichlet-Neumann Map -- Perfectly Matched Layer -- Boundary Integral Methods -- Fast Multiple Method -- Summary and Exercises -- Nonlinear Problems -- Newton's Method -- Other Methods -- Some Nonlinear Problems -- Software -- Program Verification -- Summary and Exercises. Answers to Selected Exercises. References. Index.

"This book provides a comprehensive and self-contained treatment of the numerical methods used to solve partial differential equations (PDEs), as well as both the error and efficiency of the presented methods. Featuring a large selection of theoretical examples and exercises, the book presents the main discretization techniques for PDEs, introduces advanced solution techniques, and discusses important nonlinear problems in many fields of science and engineering. It is designed as an applied mathematics text for advanced undergraduate and/or first-year graduate level courses on numerical PDEs"-- Provided by publisher.

There are no comments for this item.

Log in to your account to post a comment.
Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login