Library Logo
Normal view MARC view ISBD view

An introduction to measure-theoretic probability / [electronic resource]

by Roussas, George G [author.].
Material type: materialTypeLabelBookPublisher: Amsterdam ; Academic Press, an imprint of Elsevier, 2014.Edition: 2nd ed.Description: 1 online resource.ISBN: 9780128002902; 0128002905.Subject(s): Probabilities | Measure theory | Measure theory | Probabilities | Electronic booksOnline resources: ScienceDirect
Contents:
Certain classes of sets, measurability, and pointwise approximation -- Definition and construction of a measure and its basic properties -- Some modes of convergence of sequences of random variables and their relationships -- The integral of a random variable and its basic properties -- Standard convergence theorems, the Fubini theorem -- Standard moment and probability inequalities, convergence in the rth mean and its implications -- The Hahn-Jordan decomposition theorem, the Lebesgue decomposition theorem, and the Radon-Nikodym theorem -- Distribution functions and their basic properties, Helly-Bray type results -- Conditional expectation and conditional probability, and related properties and results -- Independence -- Topics from the theory of characteristic functions -- The central limit problem: the centered case -- The central limit problem: the noncentered case -- Topics from sequences of independent random variables -- Topics from Ergodic theory -- Two cases of statistical inference: estimation of a real-valued parameter, nonparametric estimation of a probability density function -- Appendixes: A. Brief review of chapters 1-16 -- B. Brief review of Riemann-Stieltjes integral -- C. Notation and abbreviations.
Summary: "In this introductory chapter, the concepts of a field and of a [sigma]-field are introduced, they are illustrated bymeans of examples, and some relevant basic results are derived. Also, the concept of a monotone class is defined and its relationship to certain fields and [sigma]-fields is investigated. Given a collection of measurable spaces, their product space is defined, and some basic properties are established. The concept of a measurable mapping is introduced, and its relation to certain [sigma]-fields is studied. Finally, it is shown that any random variable is the pointwise limit of a sequence of simple random variables"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

"In this introductory chapter, the concepts of a field and of a [sigma]-field are introduced, they are illustrated bymeans of examples, and some relevant basic results are derived. Also, the concept of a monotone class is defined and its relationship to certain fields and [sigma]-fields is investigated. Given a collection of measurable spaces, their product space is defined, and some basic properties are established. The concept of a measurable mapping is introduced, and its relation to certain [sigma]-fields is studied. Finally, it is shown that any random variable is the pointwise limit of a sequence of simple random variables"-- Provided by publisher.

Includes bibliographical references and index.

Print version record.

Certain classes of sets, measurability, and pointwise approximation -- Definition and construction of a measure and its basic properties -- Some modes of convergence of sequences of random variables and their relationships -- The integral of a random variable and its basic properties -- Standard convergence theorems, the Fubini theorem -- Standard moment and probability inequalities, convergence in the rth mean and its implications -- The Hahn-Jordan decomposition theorem, the Lebesgue decomposition theorem, and the Radon-Nikodym theorem -- Distribution functions and their basic properties, Helly-Bray type results -- Conditional expectation and conditional probability, and related properties and results -- Independence -- Topics from the theory of characteristic functions -- The central limit problem: the centered case -- The central limit problem: the noncentered case -- Topics from sequences of independent random variables -- Topics from Ergodic theory -- Two cases of statistical inference: estimation of a real-valued parameter, nonparametric estimation of a probability density function -- Appendixes: A. Brief review of chapters 1-16 -- B. Brief review of Riemann-Stieltjes integral -- C. Notation and abbreviations.

There are no comments for this item.

Log in to your account to post a comment.
Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login