Library Logo
Normal view MARC view ISBD view

Bio-inspired computation in telecommunications / [electronic resource]

by Yang, Xin-She [editor.]; Chien, Su Fong [editor.]; Ting, Tiew On [editor.].
Material type: materialTypeLabelBookPublisher: Waltham, MA : Elsevier Ltd., [2015]Description: 1 online resource : illustrations.ISBN: 9780128017432; 0128017430; 133600892X; 9781336008922; 0128015381; 9780128015384.Subject(s): Telecommunication | Natural computation | TECHNOLOGY & ENGINEERING -- Mechanical | Natural computation | Telecommunication | Business & Economics | Transportation Economics | Computational Biology | Telecommunications | Electronic booksOnline resources: ScienceDirect
Contents:
Front Cover; Bio-Inspired Computation in Telecommunications; Copyright ; Contents ; Preface ; List of Contributors ; Chapter 1: Bio-Inspired Computation and Optimization: An Overview; 1.1. Introduction; 1.2. Telecommunications and optimization; 1.3. Key challenges in optimization; 1.3.1. Infinite Monkey Theorem and Heuristicity; 1.3.2. Efficiency of an Algorithm; 1.3.3. How to Choose Algorithms; 1.3.4. Time Constraints; 1.4. Bio-inspired optimization algorithms; 1.4.1. SI-Based Algorithms; 1.4.1.1. Ant and bee algorithms; 1.4.1.2. Bat algorithm; 1.4.1.3. Particle swarm optimization.
1.4.1.4. Firefly algorithm1.4.1.5. Cuckoo search; 1.4.2. Non-SI-Based Algorithms; 1.4.2.1. Simulated annealing; 1.4.2.2. Genetic algorithms; 1.4.2.3. Differential evolution; 1.4.2.4. Harmony search; 1.4.3. Other Algorithms; 1.5. Artificial neural networks; 1.5.1. Basic Idea; 1.5.2. Neural Networks; 1.5.3. Back Propagation Algorithm; 1.6. Support vector machine; 1.6.1. Linear SVM; 1.6.2. Kernel Tricks and Nonlinear SVM; 1.7. Conclusions; References; Chapter 2: Bio-Inspired Approaches in Telecommunications; 2.1. Introduction; 2.2. Design problems in telecommunications; 2.3. Green communications.
2.3.1. Energy Consumption in Wireless Communications2.3.2. Metrics for Energy Efficiency; 2.3.3. Radio Resource Management; 2.3.4. Strategic Network Deployment; 2.4. Orthogonal frequency division multiplexing; 2.4.1. OFDM Systems; 2.4.2. Three-Step Procedure for Timing and Frequency Synchronization; 2.5. OFDMA model considering energy efficiency and quality-of-service; 2.5.1. Mathematical Formulation; 2.5.2. Results; 2.6. Conclusions; References; Chapter 3: Firefly Algorithm in Telecommunications; 3.1. Introduction; 3.2. Firefly algorithm; 3.2.1. Algorithm Complexity.
3.2.2. Variants of Firefly Algorithm3.3. Traffic Characterization; 3.3.1. Network Management Based on Flow Analysis and Traffic Characterization; 3.3.2. Firefly Harmonic Clustering Algorithm; 3.3.3. Results; 3.4. Applications in wireless cooperative networks; 3.4.1. Related Work; 3.4.2. System Model and Problem Statement; 3.4.2.1. Energy and spectral efficiencies; 3.4.2.2. Problem statement; 3.4.3. Dinkelbach Method; 3.4.4. Firefly Algorithm; 3.4.5. Simulations and Numerical Results; 3.5. Concluding remarks; 3.5.1. FA in Traffic Characterization; 3.5.2. FA in Cooperative Networks; References.
Chapter 4: A Survey of Intrusion Detection Systems Using Evolutionary Computation4.1. Introduction; 4.2. Intrusion detection systems; 4.2.1. IDS Components; 4.2.2. Research Areas and Challenges in Intrusion Detection; 4.3. The method: evolutionary computation; 4.4. Evolutionary computation applications on intrusion detection; 4.4.1. Foundations; 4.4.2. Data Collection; 4.4.3. Detection Techniques and Response; 4.4.3.1. Intrusion detection on conventional networks; 4.4.3.2. Intrusion detection on wireless and resource-constrained networks; 4.4.4. IDS Architecture; 4.4.5. IDS Security.
Summary: Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Online resource; title from PDF title page (EBSCO, viewed February 19, 2015).

Front Cover; Bio-Inspired Computation in Telecommunications; Copyright ; Contents ; Preface ; List of Contributors ; Chapter 1: Bio-Inspired Computation and Optimization: An Overview; 1.1. Introduction; 1.2. Telecommunications and optimization; 1.3. Key challenges in optimization; 1.3.1. Infinite Monkey Theorem and Heuristicity; 1.3.2. Efficiency of an Algorithm; 1.3.3. How to Choose Algorithms; 1.3.4. Time Constraints; 1.4. Bio-inspired optimization algorithms; 1.4.1. SI-Based Algorithms; 1.4.1.1. Ant and bee algorithms; 1.4.1.2. Bat algorithm; 1.4.1.3. Particle swarm optimization.

1.4.1.4. Firefly algorithm1.4.1.5. Cuckoo search; 1.4.2. Non-SI-Based Algorithms; 1.4.2.1. Simulated annealing; 1.4.2.2. Genetic algorithms; 1.4.2.3. Differential evolution; 1.4.2.4. Harmony search; 1.4.3. Other Algorithms; 1.5. Artificial neural networks; 1.5.1. Basic Idea; 1.5.2. Neural Networks; 1.5.3. Back Propagation Algorithm; 1.6. Support vector machine; 1.6.1. Linear SVM; 1.6.2. Kernel Tricks and Nonlinear SVM; 1.7. Conclusions; References; Chapter 2: Bio-Inspired Approaches in Telecommunications; 2.1. Introduction; 2.2. Design problems in telecommunications; 2.3. Green communications.

2.3.1. Energy Consumption in Wireless Communications2.3.2. Metrics for Energy Efficiency; 2.3.3. Radio Resource Management; 2.3.4. Strategic Network Deployment; 2.4. Orthogonal frequency division multiplexing; 2.4.1. OFDM Systems; 2.4.2. Three-Step Procedure for Timing and Frequency Synchronization; 2.5. OFDMA model considering energy efficiency and quality-of-service; 2.5.1. Mathematical Formulation; 2.5.2. Results; 2.6. Conclusions; References; Chapter 3: Firefly Algorithm in Telecommunications; 3.1. Introduction; 3.2. Firefly algorithm; 3.2.1. Algorithm Complexity.

3.2.2. Variants of Firefly Algorithm3.3. Traffic Characterization; 3.3.1. Network Management Based on Flow Analysis and Traffic Characterization; 3.3.2. Firefly Harmonic Clustering Algorithm; 3.3.3. Results; 3.4. Applications in wireless cooperative networks; 3.4.1. Related Work; 3.4.2. System Model and Problem Statement; 3.4.2.1. Energy and spectral efficiencies; 3.4.2.2. Problem statement; 3.4.3. Dinkelbach Method; 3.4.4. Firefly Algorithm; 3.4.5. Simulations and Numerical Results; 3.5. Concluding remarks; 3.5.1. FA in Traffic Characterization; 3.5.2. FA in Cooperative Networks; References.

Chapter 4: A Survey of Intrusion Detection Systems Using Evolutionary Computation4.1. Introduction; 4.2. Intrusion detection systems; 4.2.1. IDS Components; 4.2.2. Research Areas and Challenges in Intrusion Detection; 4.3. The method: evolutionary computation; 4.4. Evolutionary computation applications on intrusion detection; 4.4.1. Foundations; 4.4.2. Data Collection; 4.4.3. Detection Techniques and Response; 4.4.3.1. Intrusion detection on conventional networks; 4.4.3.2. Intrusion detection on wireless and resource-constrained networks; 4.4.4. IDS Architecture; 4.4.5. IDS Security.

Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

There are no comments for this item.

Log in to your account to post a comment.
Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login