Library Logo
Normal view MARC view ISBD view

Temporal Data Mining via Unsupervised Ensemble Learning / [electronic resource]

by Yang, Yun.
Material type: materialTypeLabelBookPublisher: Elsevier Science, 2016Description: 1 online resource.ISBN: 0128118415; 9780128118412.Subject(s): Data mining | Temporal databases | Machine learning | COMPUTERS -- General | Data mining | Machine learning | Temporal databases | Electronic booksOnline resources: ScienceDirect
Contents:
Front Cover -- Temporal Data Mining via Unsupervised Ensemble Learning -- Temporal Data Mining via Unsupervised Ensemble Learning -- Copyright -- Contents -- List of Figures -- List of Tables -- Acknowledgments -- 1 -- Introduction -- 1.1 BACKGROUND -- 1.2 PROBLEM STATEMENT -- 1.3 OBJECTIVE OF BOOK -- 1.4 OVERVIEW OF BOOK -- 2 -- Temporal Data Mining -- 2.1 INTRODUCTION -- 2.2 REPRESENTATIONS OF TEMPORAL DATA -- 2.2.1 TIME DOMAIN-BASED REPRESENTATIONS -- 2.2.2 TRANSFORMATION-BASED REPRESENTATIONS -- Piecewise Local Statistics -- Piecewise Discrete Wavelet Transforms -- Polynomial Curve Fitting -- Discrete Fourier Transforms -- 2.2.3 GENERATIVE MODEL-BASED REPRESENTATIONS -- 2.3 SIMILARITY MEASURES -- 2.3.1 SIMILARITY IN TIME -- 2.3.2 SIMILARITY IN SHAPE -- 2.3.3 SIMILARITY IN CHANGE -- 2.4 MINING TASKS -- 2.5 SUMMARY -- 3 -- Temporal Data Clustering -- 3.1 INTRODUCTION -- 3.2 OVERVIEW OF CLUSTERING ALGORITHMS -- 3.2.1 PARTITIONAL CLUSTERING -- K-means -- Hidden Markov Model-Based K-Models Clustering -- 3.2.2 HIERARCHICAL CLUSTERING -- Single Linkage -- Complete Linkage -- Average Linkage -- HMM-Based Agglomerative Clustering -- HMM-Based Divisive Clustering -- 3.2.3 DENSITY-BASED CLUSTERING -- Density-Based Spatial Clustering of Applications with Noise -- 3.2.4 MODEL-BASED CLUSTERING -- EM Algorithm -- HMM-Based Hybrid Partitional-Hierarchical Clustering -- HMM-Based Hierarchical Metaclustering -- 3.3 CLUSTERING VALIDATION -- 3.3.1 CLASSIFICATION ACCURACY -- 3.3.2 ADJUSTED RAND INDEX -- 3.3.3 JACCARD INDEX -- 3.3.4 MODIFIED HUBERT'S <U+0044> INDEX -- 3.3.5 DUNN'S VALIDITY INDEX -- 3.3.6 DAVIES-BOULDIN VALIDITY INDEX -- 3.3.7 NORMALIZED MUTUAL INFORMATION -- 3.4 SUMMARY -- 4 -- Ensemble Learning -- 4.1 INTRODUCTION -- 4.2 ENSEMBLE LEARNING ALGORITHMS -- Bagging -- Boosting -- 4.3 COMBINING METHODS -- Linear Combiner -- Product Combiner.
Majority Voting Combiner -- 4.4 DIVERSITY OF ENSEMBLE LEARNING -- 4.5 CLUSTERING ENSEMBLE -- 4.5.1 CONSENSUS FUNCTIONS -- 4.5.1.1 Hypergraphic Partitioning Approach -- Cluster-Based Similarity Partitioning Algorithm -- Hypergraph-Partitioning Algorithm -- Meta-Clustering Algorithm -- 4.5.1.2 Coassociation-Based Approach -- 4.5.1.3 Voting-Based Approach -- 4.5.2 OBJECTIVE FUNCTION -- 4.6 SUMMARY -- 5 -- HMM-Based Hybrid Meta-Clustering in Association With Ensemble Technique -- 5.1 INTRODUCTION -- 5.2 HMM-BASED HYBRID META-CLUSTERING ENSEMBLE -- 5.2.1 MOTIVATION -- 5.2.2 MODEL DESCRIPTION -- 5.3 SIMULATION -- 5.3.1 HMM-GENERATED DATA SET -- 5.3.2 CBF DATA SET -- 5.3.3 TIME SERIES BENCHMARKS -- 5.3.4 MOTION TRAJECTORY -- 5.4 SUMMARY -- 6 -- Unsupervised Learning via an Iteratively Constructed Clustering Ensemble -- 6.1 INTRODUCTION -- 6.2 ITERATIVELY CONSTRUCTED CLUSTERING ENSEMBLE -- 6.2.1 MOTIVATION -- 6.2.2 MODEL DESCRIPTION -- 6.3 SIMULATION -- 6.3.1 CYLINDER-BELL-FUNNEL DATA SET -- 6.3.2 TIME SERIES BENCHMARKS -- 6.3.3 MOTION TRAJECTORY -- 6.4 SUMMARY -- 7 -- Temporal Data Clustering via a Weighted Clustering Ensemble With Different Representations -- 7.1 INTRODUCTION -- 7.2 WEIGHTED CLUSTERING ENSEMBLE WITH DIFFERENT REPRESENTATIONS OF TEMPORAL DATA -- 7.2.1 MOTIVATION -- 7.2.2 MODEL DESCRIPTION -- 7.2.3 WEIGHTED CONSENSUS FUNCTION -- Partition Weighting Scheme -- Weighted Similarity Matrix -- Candidate Consensus Partition Generation -- 7.2.4 AGREEMENT FUNCTION -- 7.2.5 ALGORITHM ANALYSIS -- 7.3 SIMULATION -- 7.3.1 TIME SERIES BENCHMARKS -- 7.3.2 MOTION TRAJECTORY -- 7.3.3 TIME-SERIES DATA STREAM -- 7.4 SUMMARY -- 8 -- Conclusions, Future Work -- Appendix -- A.1 WEIGHTED CLUSTERING ENSEMBLE ALGORITHM ANALYSIS -- A.2 IMPLEMENTATION OF HMM-BASED META-CLUSTERING ENSEMBLE IN MATLAB CODE.
A.3 IMPLEMENTATION OF ITERATIVELY CONSTRUCTED CLUSTERING ENSEMBLE IN MATLAB CODE -- A.4 IMPLEMENTATION OF WCE WITH DIFFERENT REPRESENTATIONS -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- V -- W -- Back Cover.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Print version record.

Includes bibliographical references and index.

Front Cover -- Temporal Data Mining via Unsupervised Ensemble Learning -- Temporal Data Mining via Unsupervised Ensemble Learning -- Copyright -- Contents -- List of Figures -- List of Tables -- Acknowledgments -- 1 -- Introduction -- 1.1 BACKGROUND -- 1.2 PROBLEM STATEMENT -- 1.3 OBJECTIVE OF BOOK -- 1.4 OVERVIEW OF BOOK -- 2 -- Temporal Data Mining -- 2.1 INTRODUCTION -- 2.2 REPRESENTATIONS OF TEMPORAL DATA -- 2.2.1 TIME DOMAIN-BASED REPRESENTATIONS -- 2.2.2 TRANSFORMATION-BASED REPRESENTATIONS -- Piecewise Local Statistics -- Piecewise Discrete Wavelet Transforms -- Polynomial Curve Fitting -- Discrete Fourier Transforms -- 2.2.3 GENERATIVE MODEL-BASED REPRESENTATIONS -- 2.3 SIMILARITY MEASURES -- 2.3.1 SIMILARITY IN TIME -- 2.3.2 SIMILARITY IN SHAPE -- 2.3.3 SIMILARITY IN CHANGE -- 2.4 MINING TASKS -- 2.5 SUMMARY -- 3 -- Temporal Data Clustering -- 3.1 INTRODUCTION -- 3.2 OVERVIEW OF CLUSTERING ALGORITHMS -- 3.2.1 PARTITIONAL CLUSTERING -- K-means -- Hidden Markov Model-Based K-Models Clustering -- 3.2.2 HIERARCHICAL CLUSTERING -- Single Linkage -- Complete Linkage -- Average Linkage -- HMM-Based Agglomerative Clustering -- HMM-Based Divisive Clustering -- 3.2.3 DENSITY-BASED CLUSTERING -- Density-Based Spatial Clustering of Applications with Noise -- 3.2.4 MODEL-BASED CLUSTERING -- EM Algorithm -- HMM-Based Hybrid Partitional-Hierarchical Clustering -- HMM-Based Hierarchical Metaclustering -- 3.3 CLUSTERING VALIDATION -- 3.3.1 CLASSIFICATION ACCURACY -- 3.3.2 ADJUSTED RAND INDEX -- 3.3.3 JACCARD INDEX -- 3.3.4 MODIFIED HUBERT'S INDEX -- 3.3.5 DUNN'S VALIDITY INDEX -- 3.3.6 DAVIES-BOULDIN VALIDITY INDEX -- 3.3.7 NORMALIZED MUTUAL INFORMATION -- 3.4 SUMMARY -- 4 -- Ensemble Learning -- 4.1 INTRODUCTION -- 4.2 ENSEMBLE LEARNING ALGORITHMS -- Bagging -- Boosting -- 4.3 COMBINING METHODS -- Linear Combiner -- Product Combiner.

Majority Voting Combiner -- 4.4 DIVERSITY OF ENSEMBLE LEARNING -- 4.5 CLUSTERING ENSEMBLE -- 4.5.1 CONSENSUS FUNCTIONS -- 4.5.1.1 Hypergraphic Partitioning Approach -- Cluster-Based Similarity Partitioning Algorithm -- Hypergraph-Partitioning Algorithm -- Meta-Clustering Algorithm -- 4.5.1.2 Coassociation-Based Approach -- 4.5.1.3 Voting-Based Approach -- 4.5.2 OBJECTIVE FUNCTION -- 4.6 SUMMARY -- 5 -- HMM-Based Hybrid Meta-Clustering in Association With Ensemble Technique -- 5.1 INTRODUCTION -- 5.2 HMM-BASED HYBRID META-CLUSTERING ENSEMBLE -- 5.2.1 MOTIVATION -- 5.2.2 MODEL DESCRIPTION -- 5.3 SIMULATION -- 5.3.1 HMM-GENERATED DATA SET -- 5.3.2 CBF DATA SET -- 5.3.3 TIME SERIES BENCHMARKS -- 5.3.4 MOTION TRAJECTORY -- 5.4 SUMMARY -- 6 -- Unsupervised Learning via an Iteratively Constructed Clustering Ensemble -- 6.1 INTRODUCTION -- 6.2 ITERATIVELY CONSTRUCTED CLUSTERING ENSEMBLE -- 6.2.1 MOTIVATION -- 6.2.2 MODEL DESCRIPTION -- 6.3 SIMULATION -- 6.3.1 CYLINDER-BELL-FUNNEL DATA SET -- 6.3.2 TIME SERIES BENCHMARKS -- 6.3.3 MOTION TRAJECTORY -- 6.4 SUMMARY -- 7 -- Temporal Data Clustering via a Weighted Clustering Ensemble With Different Representations -- 7.1 INTRODUCTION -- 7.2 WEIGHTED CLUSTERING ENSEMBLE WITH DIFFERENT REPRESENTATIONS OF TEMPORAL DATA -- 7.2.1 MOTIVATION -- 7.2.2 MODEL DESCRIPTION -- 7.2.3 WEIGHTED CONSENSUS FUNCTION -- Partition Weighting Scheme -- Weighted Similarity Matrix -- Candidate Consensus Partition Generation -- 7.2.4 AGREEMENT FUNCTION -- 7.2.5 ALGORITHM ANALYSIS -- 7.3 SIMULATION -- 7.3.1 TIME SERIES BENCHMARKS -- 7.3.2 MOTION TRAJECTORY -- 7.3.3 TIME-SERIES DATA STREAM -- 7.4 SUMMARY -- 8 -- Conclusions, Future Work -- Appendix -- A.1 WEIGHTED CLUSTERING ENSEMBLE ALGORITHM ANALYSIS -- A.2 IMPLEMENTATION OF HMM-BASED META-CLUSTERING ENSEMBLE IN MATLAB CODE.

A.3 IMPLEMENTATION OF ITERATIVELY CONSTRUCTED CLUSTERING ENSEMBLE IN MATLAB CODE -- A.4 IMPLEMENTATION OF WCE WITH DIFFERENT REPRESENTATIONS -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- V -- W -- Back Cover.

There are no comments for this item.

Log in to your account to post a comment.
Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login