000 02604cam a22004574a 4500
001 8834492
003 BD-DhUL
005 20150219124343.0
006 m d
007 cr n
008 101123s2011 njua sb 001 0 eng d
020 _a9780470641835 (cloth)
020 _a0470641835 (cloth)
020 _a9781118023433
020 _a1118023439
020 _a9781118023464
020 _a1118023463
020 _a9781118023471
020 _a1118023471
035 _a(WaSeSS)ssj0000476962
040 _aDLC
_cDLC
_dYDX
_dCDX
_dYDXCP
_dOIP
_dZ@L
_dDEBBG
_dDLC
_dWaSeSS
_dBD-DhUL
042 _apcc
050 4 _aQ325.5
_b.K85 2011
082 0 0 _a006.31
_222
_bKUE
084 _aST 300
_2rvk
100 1 _aKulkarni, Sanjeev.
210 1 0 _aAn elementary introduction to statistical learning theory
245 1 3 _aAn elementary introduction to statistical learning theory /
_cSanjeev Kulkarni, Gilbert Harman.
260 _aHoboken, N.J. :
_bWiley,
_cc2011.
300 _axi, 209 p.:
_bill. ;
_c24 cm.
365 _aUS$
_b89.06
490 1 _aWiley series in probability and statistics
504 _aIncludes bibliographical references and indexes.
505 0 _aIntroduction: Classification, Learning, Features, and Applications -- Probability -- Probability Densities -- The Pattern Recognition Problem -- The Optimal Bayes Decision Rule -- Learning from Examples -- The Nearest Neighbor Rule -- Kernel Rules -- Neural Networks: Perceptrons -- Multilayer Networks -- PAC Learning -- VC Dimension -- Infinite VC Dimension -- The Function Estimation Problem -- Learning Function Estimation -- Simplicity -- Support Vector Machines -- Boosting -- Bibliography.
520 _a"A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition and statistical learning theory. Exploring topics that are not often covered in introductory level books on statistical learning theory, including PAC learning, VC dimension, and simplicity, the authors present upper-undergraduate and graduate levels with the basic theory behind contemporary machine learning and uniquely suggest it serves as an excellent framework for philosophical thinking about inductive inference"--Back cover.
650 0 _aMachine learning
_xStatistical methods.
650 0 _aPattern recognition systems.
700 1 _aHarman, Gilbert.
830 0 _aWiley series in probability and statistics.
942 _2ddc
_cBK
999 _c1316
_d1316