000 03945cam a2200325 i 4500
001 298857
003 BD-DhUL
005 20161208134610.0
008 750607s1976 nyu b 001 0 eng d
010 _a 75017903
020 _a007054235X
_c$14.95
035 _a(OCoLC)1502474
035 _a298857
040 _aDLC
_cDLC
_dDLC
_dBD-DhUL
_dANL
082 _a517
_bRUP
100 1 _aRudin, Walter,
_d1921-
245 1 0 _aPrinciples of mathematical analysis /
_cWalter Rudin.
250 _a3d ed.
260 _aNew York :
_bMcGraw-Hill,
_c1976.
300 _ax, 342 p. ;
_c24 cm.
490 0 _aInternational series in pure and applied mathematics
500 _aIncludes index.
504 _aBibliography: p. [335]-336.
505 0 0 _aMachine derived contents note: Chapter 1: The Real and Complex Number Systems -- Introduction -- Ordered Sets -- Fields -- The Real Field -- The Extended Real Number System -- The Complex Field -- Euclidean Spaces -- Appendix -- Exercises -- Chapter 2: Basic Topology -- Finite, Countable, and Uncountable Sets -- Metric Spaces -- Compact Sets -- Perfect Sets -- Connected Sets -- Exercises -- Chapter 3: Numerical Sequences and Series -- Convergent Sequences -- Subsequences -- Cauchy Sequences -- Upper and Lower Limits -- Some Special Sequences -- Series -- Series of Nonnegative Terms -- The Number e -- The Root and Ratio Tests -- Power Series -- Summation by Parts -- Absolute Convergence -- Addition and Multiplication of Series -- Rearrangements -- Exercises -- Chapter 4: Continuity -- Limits of Functions -- Continuous Functions -- Continuity and Compactness -- Continuity and Connectedness -- Discontinuities -- Monotonic Functions -- Infinite Limits and Limits at Infinity -- Exercises -- Chapter 5: Differentiation -- The Derivative of a Real Function -- Mean Value Theorems -- The Continuity of Derivatives -- L'Hospital's Rule -- Derivatives of Higher-Order -- Taylor's Theorem -- Differentiation of Vector-valued Functions -- Exercises -- Chapter 6: The Riemann-Stieltjes Integral -- Definition and Existence of the Integral -- Properties of the Integral -- Integration and Differentiation -- Integration of Vector-valued Functions -- Rectifiable Curves -- Exercises -- Chapter 7: Sequences and Series of Functions -- Discussion of Main Problem -- Uniform Convergence -- Uniform Convergence and Continuity -- Uniform Convergence and Integration -- Uniform Convergence and Differentiation -- Equicontinuous Families of Functions -- The Stone-Weierstrass Theorem -- Exercises -- Chapter 8: Some Special Functions -- Power Series -- The Exponential and Logarithmic Functions -- The Trigonometric Functions -- The Algebraic Completeness of the Complex Field -- Fourier Series -- The Gamma Function -- Exercises -- Chapter 9: Functions of Several Variables -- Linear Transformations -- Differentiation -- The Contraction Principle -- The Inverse Function Theorem -- The Implicit Function Theorem -- The Rank Theorem -- Determinants -- Derivatives of Higher Order -- Differentiation of Integrals -- Exercises -- Chapter 10: Integration of Differential Forms -- Integration -- Primitive Mappings -- Partitions of Unity -- Change of Variables -- Differential Forms -- Simplexes and Chains -- Stokes' Theorem -- Closed Forms and Exact Forms -- Vector Analysis -- Exercises -- Chapter 11: The Lebesgue Theory -- Set Functions -- Construction of the Lebesgue Measure -- Measure Spaces -- Measurable Functions -- Simple Functions -- Integration -- Comparison with the Riemann Integral -- Integration of Complex Functions -- Functions of Class L� -- Exercises -- Bibliography -- List of Special Symbols -- Index.
650 0 _aMathematical analysis.
856 4 1 _3Table of contents only
_uhttp://www.loc.gov/catdir/toc/mh031/75017903.html
856 4 2 _3Publisher description
_uhttp://www.loc.gov/catdir/enhancements/fy0602/75017903-d.html
942 _2ddc
_cBK
984 _aANL
_c515 R916P-3
999 _c132978
_d132978