000 07883cam a2200733Mi 4500
001 ocn743404801
003 OCoLC
005 20171116140421.0
006 m o d
007 cr un|---uuuuu
008 110627s2011 xx obf 001 0 eng d
016 7 _a015684976
_2Uk
020 _a9781118014967
_q(electronic bk.)
020 _a1118014960
_q(electronic bk.)
020 _a9781118014943
_q(electronic bk.)
020 _a1118014944
_q(electronic bk.)
020 _z9780470177938
_q(hardback)
020 _z0470177934
_q(hardback)
024 8 _a9786613072429
029 1 _aAU@
_b000048489625
029 1 _aDEBBG
_bBV041911846
029 1 _aDEBSZ
_b379320223
029 1 _aDEBSZ
_b430994214
029 1 _aGBVCP
_b790033895
029 1 _aHEBIS
_b255170262
029 1 _aNLGGC
_b333940105
029 1 _aNLGGC
_b38961632X
029 1 _aNZ1
_b14287772
029 1 _aNZ1
_b15340714
029 1 _aDEBBG
_bBV043393335
035 _a(OCoLC)743404801
_z(OCoLC)720822762
_z(OCoLC)721356437
_z(OCoLC)770867378
_z(OCoLC)839304806
037 _a307242
_bMIL
040 _aIDEBK
_beng
_epn
_cIDEBK
_dOCLCQ
_dUKMGB
_dDG1
_dOCLCQ
_dOCLCF
_dN$T
_dCDX
_dE7B
_dYDXCP
_dOSU
_dEBLCP
_dREDDC
_dMERUC
_dWAU
_dDEBSZ
_dOCL
_dDEBBG
_dOCLCQ
_dCOO
_dS3O
_dOCLCQ
049 _aMAIN
050 4 _aQA298
_b.K76 2011
072 7 _aMAT
_x041000
_2bisacsh
082 0 4 _a518/.282
_223
084 _aMAT029000
_2bisacsh
100 1 _aKroese, Dirk P.
245 1 0 _aHandbook of monte carlo methods /
_cDirk P. Kroese, Thomas Taimre, Zdravko I. Botev.
_h[electronic resource]
260 _a[Place of publication not identified] :
_bWiley,
_c2011.
300 _a1 online resource (768 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aWiley series in probability and statistics ;
_v706
504 _aIncludes bibliographical references and index.
505 0 _aCover13; -- Contents -- Preface -- Acknowledgments -- 1 Uniform Random Number Generation -- 1.1 Random Numbers -- 1.1.1 Properties of a Good Random Number Generator -- 1.1.2 Choosing a Good Random Number Generator -- 1.2 Generators Based on Linear Recurrences -- 1.2.1 Linear Congruential Generators -- 1.2.2 Multiple-Recursive Generators -- 1.2.3 Matrix Congruential Generators -- 1.2.4 Modulo 2 Linear Generators -- 1.3 Combined Generators -- 1.4 Other Generators -- 1.5 Tests for Random Number Generators -- 1.5.1 Spectral Test -- 1.5.2 Empirical Tests -- References -- 2 Quasirandom Number Generation -- 2.1 Multidimensional Integration -- 2.2 Van der Corput and Digital Sequences -- 2.3 Halton Sequences -- 2.4 Faure Sequences -- 2.5 Sobol' Sequences -- 2.6 Lattice Methods -- 2.7 Randomization and Scrambling -- References -- 3 Random Variable Generation -- 3.1 Generic Algorithms Based on Common Transformations -- 3.1.1 Inverse-Transform Method -- 3.1.2 Other Transformation Methods -- 3.1.3 Table Lookup Method -- 3.1.4 Alias Method -- 3.1.5 Acceptance-Rejection Method -- 3.1.6 Ratio of Uniforms Method -- 3.2 Generation Methods for Multivariate Random Variables -- 3.2.1 Copulas -- 3.3 Generation Methods for Various Random Objects -- 3.3.1 Generating Order Statistics -- 3.3.2 Generating Uniform Random Vectors in a Simplex -- 3.3.3 Generating Random Vectors Uniformly Distributed in a Unit Hyperball and Hypersphere -- 3.3.4 Generating Random Vectors Uniformly Distributed in a Hyperellipsoid -- 3.3.5 Uniform Sampling on a Curve -- 3.3.6 Uniform Sampling on a Surface -- 3.3.7 Generating Random Permutations -- 3.3.8 Exact Sampling From a Conditional Bernoulli Distribution -- References -- 4 Probability Distributions -- 4.1 Discrete Distributions -- 4.1.1 Bernoulli Distribution -- 4.1.2 Binomial Distribution -- 4.1.3 Geometric Distribution -- 4.1.4 Hypergeometric Distribution -- 4.1.5 Negative Binomial Distribution -- 4.1.6 Phase-Type Distribution (Discrete Case) -- 4.1.7 Poisson Distribution -- 4.1.8 Uniform Distribution (Discrete Case) -- 4.2 Continuous Distributions -- 4.2.1 Beta Distribution -- 4.2.2 Cauchy Distribution -- 4.2.3 Exponential Distribution -- 4.2.4 F Distribution -- 4.2.5 Fr233;chet Distribution -- 4.2.6 Gamma Distribution -- 4.2.7 Gumbel Distribution -- 4.2.8 Laplace Distribution -- 4.2.9 Logistic Distribution -- 4.2.10 Log-Normal Distribution -- 4.2.11 Normal Distribution -- 4.2.12 Pareto Distribution -- 4.2.13 Phase-Type Distribution (Continuous Case) -- 4.2.14 Stable Distribution -- 4.2.15 Student's t Distribution -- 4.2.16 Uniform Distribution (Continuous Case) -- 4.2.17 Wald Distribution -- 4.2.18 Weibull Distribution -- 4.3 Multivariate Distributions -- 4.3.1 Dirichlet Distribution -- 4.3.2 Multinomial Distribution -- 4.3.3 Multivariate Normal Distribution -- 4.3.4 Multivariate Student's t Distribution -- 4.3.5 Wishart Distribution -- References -- 5 Random Process Generation -- 5.1 Gaussian Processes -- 5.1.1 Markovian Gaussian Processes -- 5.1.2 Stationary Gaussian Processes and the FFT -- 5.2 Markov Chains -- 5.3 Markov Jump Processes -- 5.4 Poisson Processes -- 5.4.1 Compound Poisson Process -- 5.5 Wiener Process and Brownian Motion -- 5.6 Stochastic Differential Eq.
520 _aA comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications. More and more of today's numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation, Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run, Discrete-event simulation, Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation, Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo, Estimation of derivatives and sensitivity analysis. Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization. The presented theoretical concepts are illustrated with worked examples that use MATLAB® a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation.
650 0 _aMonte Carlo method
_vHandbooks, manuals, etc.
650 4 _aMonte Carlo method.
650 7 _aMATHEMATICS
_xProbability & Statistics
_xGeneral.
_2bisacsh
650 7 _aMATHEMATICS
_xNumerical Analysis.
_2bisacsh
650 7 _aMonte Carlo method.
_2fast
_0(OCoLC)fst01025819
655 4 _aElectronic resource.
655 4 _aElectronic books.
655 7 _aHandbooks and manuals.
_2fast
_0(OCoLC)fst01423877
700 1 _aTaimre, Thomas.
_4aut
700 1 _aBotev, Zdravko I.
_4aut
776 0 8 _iPrint version:
_aKroese, Dirk P.
_tHandbook of Monte Carlo methods.
_dHoboken, N.J. : Wiley, ©2011
_z9780470177938
_w(DLC) 2010042348
_w(OCoLC)669751136
830 0 _aWiley series in probability and statistics ;
_v706.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118014967
_zWiley Online Library
942 _2ddc
_cBK
999 _c205181
_d205181