000 19571cam a2200793Ka 4500
001 ocn757401381
003 OCoLC
005 20171024103623.0
006 m o d
007 cr cnu---unuuu
008 111017s2011 gw a ob 001 0 eng d
020 _a9783527636303
_q(electronic bk.)
020 _a3527636307
_q(electronic bk.)
020 _a9783527636280
_q(electronic bk.)
020 _a3527636285
_q(electronic bk.)
020 _a9783527636297
_q(ePub)
020 _a3527636293
_q(ePub)
020 _a9783527636310
_q(Mobi)
020 _a3527636315
_q(Mobi)
020 _z3527410031
020 _z9783527410033
029 1 _aAU@
_b000047551147
029 1 _aDEBSZ
_b347955517
029 1 _aDEBSZ
_b372814980
029 1 _aDEBSZ
_b430997469
029 1 _aNLGGC
_b338323414
029 1 _aNZ1
_b16077594
029 1 _aDEBBG
_bBV043393565
035 _a(OCoLC)757401381
_z(OCoLC)714799132
037 _a10.1002/9783527636280
_bWiley InterScience
_nhttp://www3.interscience.wiley.com
040 _aN$T
_beng
_epn
_cN$T
_dDG1
_dYDXCP
_dDEBSZ
_dCDX
_dE7B
_dOCLCQ
_dEBLCP
_dOCLCQ
_dB24X7
_dOCLCQ
_dCOO
_dNLGGC
_dOCLCQ
_dDEBBG
049 _aMAIN
050 4 _aTK8322
_b.A38 2011eb
072 7 _aTEC
_x009070
_2bisacsh
082 0 4 _a621.472
_222
245 0 0 _aAdvanced characterization techniques for thin film solar cells /
_cedited by Daniel Abou-Ras, Thomas Kirchartz, and Uwe Rau.
_h[electronic resource]
260 _aWeinheim, Germany :
_bWiley-VCH,
_c©2011.
300 _a1 online resource (xxxvi, 547 pages) :
_billustrations (some color)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 0 _gMachine generated contents note:
_gpt. one
_tIntroduction --
_g1.
_tIntroduction to Thin-Film Photovoltaics /
_rUwe Rau --
_g1.1.
_tIntroduction --
_g1.2.
_tThe Photovoltaic Principle --
_g1.2.1.
_tThe Shockley-Queisser Theory --
_g1.2.2.
_tFrom the Ideal Solar Cell to Real Solar Cells --
_g1.2.3.
_tLight Absorption and Light Trapping --
_g1.2.4.
_tCharge Extraction --
_g1.2.5.
_tNonradiative Recombination --
_g1.3.
_tFunctional Layers in Thin-Film Solar Cells --
_g1.4.
_tComparison of Various Thin-Film Solar-Cell Types --
_g1.4.1.
_tCu(In, Ga)Se2 --
_g1.4.1.1.
_tBasic Properties and Technology --
_g1.4.1.2.
_tLayer-Stacking Sequence and Band Diagram of the Heterostructure --
_g1.4.2.
_tCdTe --
_g1.4.2.1.
_tBasic Properties and Technology --
_g1.4.2.2.
_tLayer-Stacking Sequence and Band Diagram of the Heterostructure --
_g1.4.3.
_tThin-Film Silicon Solar Cells --
_g1.4.3.1.
_tHydrogenated Amorphous Si (a-Si: H) --
_g1.4.3.2.
_tMetastability in a-Si: H: The Staebler-Wronski Effect --
_g1.4.3.3.
_tHydrogenated Microcrystalline Silicon (& mu;c-Si: H) --
_g1.4.3.4.
_tMicromorph Tandem Solar Cells.
505 0 0 _g1.5.
_tConclusions --
_tReferences --
_gpt. Two
_tDevice Characterization --
_g2.
_tFundamental Electrical Characterization of Thin-Film Solar Cells /
_rUwe Rau --
_g2.1.
_tIntroduction --
_g2.2.
_tCurrent/Voltage Curves --
_g2.2.1.
_tShape of Current/Voltage Curves and their Description with Equivalent Circuit Models --
_g2.2.2.
_tMeasurement of Current/Voltage Curves --
_g2.2.3.
_tDetermination of Ideality Factors and Series Resistances --
_g2.2.4.
_tTemperature-Dependent Current/Voltage Measurements --
_g2.3.
_tQuantum Efficiency Measurements --
_g2.3.1.
_tDefinition --
_g2.3.2.
_tMeasurement Principle and Calibration --
_g2.3.3.
_tQuantum Efficiency Measurements of Tandem Solar Cells --
_g2.3.4.
_tDifferential Spectral Response (DSR) Measurements --
_g2.3.5.
_tInterpretation of Quantum Efficiency Measurements in Thin-Film Silicon Solar Cells --
_tReferences --
_g3.
_tElectroluminescence Analysis of Solar Cells and Solar Modules /
_rUwe Rau --
_g3.1.
_tIntroduction --
_g3.2.
_tBasics --
_g3.3.
_tSpectrally Resolved Electroluminescence --
_g3.4.
_tSpatially Resolved Electroluminescence of c-Si Solar Cells --
_g3.5.
_tElectroluminescence Imaging of Cu(In, Ga)Se2 Thin-Film Modules.
505 0 0 _g3.6.
_tModeling of Spatially Resolved Electroluminescence --
_tReferences --
_g4.
_tCapacitance Spectroscopy of Thin-Film Solar Cells /
_rPawel Zabierowski --
_g4.1.
_tIntroduction --
_g4.2.
_tAdmittance Basics --
_g4.3.
_tSample Requirements --
_g4.4.
_tInstrumentation --
_g4.5.
_tCapacitance-Voltage Profiling and the Depletion Approximation --
_g4.6.
_tAdmittance Response of Deep States --
_g4.7.
_tThe Influence of Deep States on CV Profiles --
_g4.8.
_tDLTS --
_g4.8.1.
_tDLTS of Thin-Film PV Devices --
_g4.9.
_tAdmittance Spectroscopy --
_g4.10.
_tDrive Level Capacitance Profiling --
_g4.11.
_tPhotocapacitance --
_g4.12.
_tThe Meyer-Neldel Rule --
_g4.13.
_tSpatial Inhomogeneities and Interface States --
_g4.14.
_tMetastability --
_tReferences --
_gpt. Three
_tMaterials Characterization --
_g5.
_tCharacterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy /
_rKarsten Bittkau --
_g5.1.
_tIntroduction --
_g5.2.
_tHow Does a Scanning Near-Field Optical Microscope Work? --
_g5.3.
_tLight Scattering in the Wave Picture --
_g5.4.
_tThe Role of Evanescent Modes for Light Trapping --
_g5.5.
_tAnalysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation.
505 0 0 _g5.6.
_tHow to Extract Far-Field Scattering Properties by Scanning Near-Field Optical Microscopy? --
_g5.7.
_tConclusion --
_tReferences --
_g6.
_tSpectroscopic Ellipsometry /
_rRobert W. Collins --
_g6.1.
_tIntroduction --
_g6.2.
_tTheory --
_g6.2.1.
_tPolarized Light --
_g6.2.2.
_tReflection from a Single Interface --
_g6.3.
_tEllipsometry Instrumentation --
_g6.3.1.
_tRotating Analyzer SE for Ex-Situ Applications --
_g6.3.2.
_tRotating Compensator SE for Real-Time Applications --
_g6.4.
_tData Analysis --
_g6.4.1.
_tExact Numerical Inversion --
_g6.4.2.
_tLeast-Squares Regression --
_g6.4.3.
_tVirtual Interface Analysis --
_g6.5.
_tRTSE of Thin Film Photovoltaics --
_g6.5.1.
_tThin Si: H --
_g6.5.2.
_tCdTe --
_g6.5.3.
_tCuInSe2 --
_g6.6.
_tSummary and Future --
_g6.7.
_tDefinition of Variables --
_tReferences --
_g7.
_tPhotoluminescence Analysis of Thin-Film Solar Cells /
_rLevent Gutay --
_g7.1.
_tIntroduction --
_g7.2.
_tExperimental Issues --
_g7.2.1.
_tDesign of the Optical System --
_g7.2.2.
_tCalibration --
_g7.2.3.
_tCryostat --
_g7.3.
_tBasic Transitions --
_g7.3.1.
_tExcitons --
_g7.3.2.
_tFree-Bound Transitions --
_g7.3.3.
_tDonor-Acceptor Pair Recombination --
_g7.3.4.
_tPotential Fluctuations.
505 0 0 _g7.3.5.
_tBand-Band Transitions --
_g7.4.
_tCase Studies --
_g7.4.1.
_tLow-Temperature Photoluminescence Analysis --
_g7.4.2.
_tRoom-Temperature Measurements: Estimation of Voc from PL Yield --
_g7.4.3.
_tSpatially Resolved Photoluminescence: Absorber Inhomogeneities --
_tReferences --
_g8.
_tSteady-State Photocarrier Crating Method /
_rRudolf Bruggemann --
_g8.1.
_tIntroduction --
_g8.2.
_tBasic Analysis of SSPG and Photocurrent Response --
_g8.2.1.
_tOptical Model --
_g8.2.2.
_tSemiconductor Equations --
_g8.2.3.
_tDiffusion Length: Ritter-Zeldov-Weiser Analysis --
_g8.2.3.1.
_tEvaluation Schemes --
_g8.2.4.
_tMore Detailed Analyses --
_g8.2.4.1.
_tInfluence of the Dark Conductivity --
_g8.2.4.2.
_tInfluence of Traps --
_g8.2.4.3.
_tMinority-Carrier and Majority-Carrier Mobility-Lifetime Products --
_g8.3.
_tExperimental Setup --
_g8.4.
_tData Analysis --
_g8.5.
_tResults --
_g8.5.1.
_tHydrogenated Amorphous Silicon --
_g8.5.1.1.
_tTemperature and Generation Rate Dependence --
_g8.5.1.2.
_tSurface Recombination --
_g8.5.1.3.
_tElectric-Field Influence --
_g8.5.1.4.
_tFermi-Level Position --
_g8.5.1.5.
_tDefects and Light-Induced Degradation.
505 0 0 _g8.5.1.6.
_tThin-Film Characterization and Deposition Methods --
_g8.5.2.
_tHydrogenated Amorphous Silicon Alloys --
_g8.5.3.
_tHydrogenated Microcrystalline Silicon --
_g8.5.4.
_tHydrogenated Microcrystalline Germanium --
_g8.5.5.
_tOther Thin-Film Semiconductors --
_g8.6.
_tDensity-of-States Determination --
_g8.7.
_tSummary --
_tReferences --
_g9.
_tTime-of-Flight Analysis /
_rTorsten Bronger --
_g9.1.
_tIntroduction --
_g9.2.
_tFundamentals of TOF Measurements --
_g9.2.1.
_tAnomalous Dispersion --
_g9.2.2.
_tBasic Electronic Properties of Thin-Film Semiconductors --
_g9.3.
_tExperimental Details --
_g9.3.1.
_tAccompanying Measurements --
_g9.3.1.1.
_tCapacitance --
_g9.3.1.2.
_tCollection --
_g9.3.1.3.
_tBuilt-in Field --
_g9.3.2.
_tCurrent Decay --
_g9.3.3.
_tCharge Transient --
_g9.3.4.
_tPossible Problems --
_g9.3.4.1.
_tDielectric Relaxation --
_g9.3.5.
_tInhomogeneous Field --
_g9.4.
_tAnalysis of TOF Results --
_g9.4.1.
_tMultiple Trapping --
_g9.4.1.1.
_tOverview of the Processes --
_g9.4.1.2.
_tEnergetic Distribution of Carriers --
_g9.4.1.3.
_tTime Dependence of Electrical Current --
_g9.4.2.
_tSpatial Charge Distribution --
_g9.4.2.1.
_tTemperature Dependence.
505 0 0 _g9.4.3.
_tDensity of States --
_g9.4.3.1.
_tWidths of Band Tails --
_g9.4.3.2.
_tProbing of Deep States --
_tReferences --
_g10.
_tElectron-Spin Resonance (ESR) in Hydrogenated Amorphous Silicon (a-Si: H) /
_rJan Behrends --
_g10.1.
_tIntroduction --
_g10.2.
_tBasics of ESR --
_g10.3.
_tHow to Measure ESR --
_g10.3.1.
_tESR Setup and Measurement Procedure --
_g10.3.2.
_tPulse ESR --
_g10.3.3.
_tSample Preparation --
_g10.4.
_tThe g Tensor and Hyperfine Interaction in Disordered Solids --
_g10.4.1.
_tZeeman Energy and g Tensor --
_g10.4.2.
_tHyperfine Interaction --
_g10.4.3.
_tLine-Broadening Mechanisms --
_g10.5.
_tDiscussion of Selected Results --
_g10.5.1.
_tESR on Undoped a-Si: H --
_g10.5.2.
_tLESR on Undoped a-Si: H --
_g10.5.3.
_tESR on Doped a-Si: H --
_g10.5.4.
_tLight-Induced Degradation in a-Si: H --
_g10.5.4.1.
_tExcess Charge-Carrier Recombination and Weak Si-Si Bond Breaking --
_g10.5.4.2.
_tSi-H Bond Dissociation and Hydrogen Collision Model --
_g10.5.4.3.
_tTransformation of Existing Nonparamagnetic Charged Dangling-Bond Defects --
_g10.6.
_tAlternative ESR Detection --
_g10.6.1.
_tHistory of EDMR --
_g10.6.2.
_tEDMR on a-Si: H Solar Cells.
505 0 0 _g10.7.
_tConcluding Remarks --
_tReferences --
_g11.
_tScanning Probe Microscopy on Inorganic Thin Films for Solar Cells /
_rIris Visoly-Fisher --
_g11.1.
_tIntroduction --
_g11.2.
_tExperimental Background --
_g11.2.1.
_tAtomic Force Microscopy --
_g11.2.1.1.
_tContact Mode --
_g11.2.1.2.
_tNoncontact Mode --
_g11.2.2.
_tConductive Atomic Force Microscopy --
_g11.2.3.
_tScanning Capacitance Microscopy --
_g11.2.4.
_tKelvin Probe Force Microscopy --
_g11.2.5.
_tScanning Tunneling Microscopy --
_g11.2.6.
_tIssues of Sample Preparation --
_g11.3.
_tSelected Applications --
_g11.3.1.
_tSurface Homogeneity --
_g11.3.2.
_tGrain Boundaries --
_g11.3.3.
_tCross-Sectional Studies --
_g11.4.
_tSummary --
_tReferences --
_g12.
_tElectron Microscopy on Thin Films for Solar Cells /
_rSebastian S. Schmidt --
_g12.1.
_tIntroduction --
_g12.2.
_tScanning Electron Microscopy --
_g12.2.1.
_tImaging Techniques --
_g12.2.2.
_tElectron Backscatter Diffraction --
_g12.2.3.
_tEnergy-Dispersive and Wavelength-Dispersive X-Ray Spectrometry --
_g12.2.4.
_tElectron-Beam-Induced Current Measurements --
_g12.2.4.1.
_tElectron-Beam Generation --
_g12.2.4.2.
_tCharge-Carrier Collection in a Solar Cell.
505 0 0 _g12.2.4.3.
_tExperimental Setups --
_g12.2.4.4.
_tCritical Issues --
_g12.2.5.
_tCathodoluminescence --
_g12.2.5.1.
_tExample: Spectrum Imaging of CdTe Thin Films --
_g12.2.6.
_tScanning Probe and Scanning-Probe Microscopy Integrated Platform --
_g12.2.7.
_tCombination of Various Scanning Electron Microscopy Techniques --
_g12.3.
_tTransmission Electron Microscopy --
_g12.3.1.
_tImaging Techniques --
_g12.3.1.1.
_tBright-Field and Dark-Field Imaging in the Conventional Mode --
_g12.3.1.2.
_tHigh-Resolution Imaging in the Conventional Mode --
_g12.3.1.3.
_tImaging in the Scanning Mode Using an Annular Dark-Field Detector --
_g12.3.2.
_tElectron Diffraction.
505 0 0 _gNote continued:
_g12.3.2.1.
_tSelected-Area Electron Diffraction in the Conventional Mode --
_g12.3.2.2.
_tConvergent-Beam Electron Diffraction in the Scanning Mode --
_g12.3.3.
_tElectron Energy-Loss Spectrometry and Energy-Filtered Transmission Electron Microscopy --
_g12.3.3.1.
_tScattering Theory --
_g12.3.3.2.
_tExperiment and Setup --
_g12.3.3.3.
_tThe Energy-Loss Spectrum --
_g12.3.3.4.
_tApplications and Comparison with EDX Spectroscopy --
_g12.3.4.
_tOff-Axis and In-Line Electron Holography --
_g12.4.
_tSample Preparation Techniques --
_g12.4.1.
_tPreparation for Scanning Electron Microscopy --
_g12.4.2.
_tPreparation for Transmission Electron Microscopy --
_tReferences --
_g13.
_tX-Ray and Neutron Diffraction on Materials for Thin-Film Solar Cells /
_rRoland Mainz --
_g13.1.
_tIntroduction --
_g13.2.
_tDiffraction of X-Rays and Neutron by Matter --
_g13.3.
_tNeutron Powder Diffraction of Absorber Materials for Thin-Film Solar Cells --
_g13.3.1.
_tExample: Investigation of Intrinsic Point Defects in Nonstoichiometric CuInSe2 by Neutron Diffraction.
505 0 0 _g13.4.
_tGrazing Incidence X-Ray Diffraction (GIXRD) --
_g13.5.
_tEnergy Dispersive X-Ray Diffraction (EDXRD) --
_tReferences --
_g14.
_tRaman Spectroscopy on Thin Films for Solar Cells /
_rAlejandro Perez-Rodriguez --
_g14.1.
_tIntroduction --
_g14.2.
_tFundamentals of Raman Spectroscopy --
_g14.3.
_tVibrational Modes in Crystalline Materials --
_g14.4.
_tExperimental Considerations --
_g14.4.1.
_tLaser Source --
_g14.4.2.
_tLight Collection and Focusing Optics --
_g14.4.3.
_tSpectroscopic Module --
_g14.5.
_tCharacterization of Thin-Film Photovoltaic Materials --
_g14.5.1.
_tIdentification of Crystalline Structures --
_g14.5.2.
_tEvaluation of Film Crystallinity --
_g14.5.3.
_tChemical Analysis of Semiconducting Alloys --
_g14.5.4.
_tNanocrystalline and Amorphous Materials --
_g14.5.5.
_tEvaluation of Stress --
_g14.6.
_tConclusions --
_tReferences --
_g15.
_tSoft X-Ray and Electron Spectroscopy: A Unique "Tool Chest" to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces /
_rClemens Heske --
_g15.1.
_tIntroduction --
_g15.2.
_tCharacterization Techniques --
_g15.3.
_tProbing the Chemical Surface Structure: Impact of Wet Chemical Treatments on Thin-Film Solar Cell Absorbers.
505 0 0 _g15.4.
_tProbing the Electronic Surface and Interface Structure: Band Alignment in Thin-Film Solar Cells --
_g15.5.
_tSummary --
_tReferences --
_g16.
_tElemental Distribution Profiling of Thin Films for Solar Cells /
_rRaquel Caballero --
_g16.1.
_tIntroduction --
_g16.2.
_tGlow Discharge-Optical Emission (GD-OES) and Glow Discharge-Mass Spectroscopy (GD-MS) --
_g16.2.1.
_tPrinciples --
_g16.2.2.
_tInstrumentation --
_g16.2.2.1.
_tPlasma Sources --
_g16.2.2.2.
_tPlasma Conditions --
_g16.2.2.3.
_tDetection of Optical Emission --
_g16.2.2.4.
_tMass Spectroscopy --
_g16.2.3.
_tQuantification --
_g16.2.3.1.
_tGlow Discharge-Optical Emission Spectroscopy --
_g16.2.3.2.
_tGlow Discharge-Mass Spectroscopy --
_g16.2.4.
_tApplications --
_g16.2.4.1.
_tGlow Discharge-Optical Emission Spectroscopy --
_g16.2.4.2.
_tGlow Discharge-Mass Spectroscopy --
_g16.3.
_tSecondary Ion Mass Spectrometry (SIMS) --
_g16.3.1.
_tPrinciple of the Method --
_g16.3.2.
_tData Analysis --
_g16.3.3.
_tQuantification --
_g16.3.4.
_tApplications for Solar Cells --
_g16.4.
_tAuger Electron Spectroscopy (AES) --
_g16.4.1.
_tIntroduction --
_g16.4.2.
_tThe Auger Process --
_g16.4.3.
_tAuger Electron Signals.
505 0 0 _g16.4.4.
_tInstrumentation --
_g16.4.5.
_tAuger Electron Signal Intensities and Quantification --
_g16.4.6.
_tQuantification --
_g16.4.7.
_tApplication --
_g16.5.
_tX-Ray Photoelectron Spectroscopy (XPS) --
_g16.5.1.
_tTheoretical Principles --
_g16.5.2.
_tInstrumentation --
_g16.5.3.
_tApplication to Thin Film Solar Cells --
_g16.6.
_tEnergy-Dispersive X-Ray Analysis on Fractured Cross Sections --
_g16.6.1.
_tBasics on Energy-Dispersive X-Ray Spectrometry in a Scanning Electron Microscope --
_g16.6.2.
_tSpatial Resolutions --
_g16.6.3.
_tApplications --
_g16.6.3.1.
_tSample Preparation --
_tReferences --
_g17.
_tHydrogen Effusion Experiments /
_rFlorian Einsele --
_g17.1.
_tIntroduction --
_g17.2.
_tExperimental Setup --
_g17.3.
_tData Analysis --
_g17.3.1.
_tIdentification of Rate-Limiting Process --
_g17.3.2.
_tAnalysis of Diffusing Hydrogen Species from Hydrogen Effusion Measurements --
_g17.3.3.
_tAnalysis of H2 Surface Desorption --
_g17.3.4.
_tAnalysis of Diffusion-Limited Effusion --
_g17.3.5.
_tAnalysis of Effusion Spectra in Terms of Hydrogen Density of States --
_g17.3.6.
_tAnalysis of Film Microstructure by Effusion of Implanted Rare Gases.
505 0 0 _g17.4.
_tDiscussion of Selected Results --
_g17.4.1.
_tAmorphous Silicon and Germanium Films --
_g17.4.1.1.
_tMaterial Density versus Annealing and Hydrogen Content --
_g17.4.1.2.
_tEffect of Doping on H Effusion --
_g17.4.2.
_tAmorphous Silicon Alloys: Si-C --
_g17.4.3.
_tMicrocrystalline Silicon --
_g17.4.4.
_tZinc Oxide Films --
_g17.5.
_tComparison with Other Experiments --
_g17.6.
_tConcluding Remarks --
_tReferences --
_gpt. Four
_tMaterials and Device Modeling --
_g18.
_tAb-Initio Modeling of Defects in Semiconductors /
_rJohan Pohl --
_g18.1.
_tIntroduction --
_g18.2.
_tDensity Functional Theory and Methods --
_g18.2.1.
_tBasis Sets --
_g18.2.2.
_tFunctionals for Exchange and Correlation --
_g18.2.2.1.
_tLocal Approximations --
_g18.2.2.2.
_tFunctionals Beyond LDA/GGA --
_g18.3.
_tMethods Beyond DFT --
_g18.4.
_tFrom Total Energies to Materials' Properties --
_g18.5.
_tAb-initio Characterization of Point Defects --
_g18.5.1.
_tThermodynamics of Point Defects --
_g18.5.2.
_tFormation Energies from Ab-Initio Calculations --
_g18.5.3.
_tCase study Point Defects in ZnO --
_g18.6.
_tConclusions --
_tReferences --
_g19.
_tOne-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells /
_rThomas Kirchartz.
505 0 0 _g19.1.
_tIntroduction --
_g19.2.
_tFundamentals --
_g19.3.
_tModeling Hydrogenated Amorphous and Microcrystalline Silicon --
_g19.3.1.
_tDensity of States and Transport Hydrogenated Amorphous Silicon --
_g19.3.2.
_tDensity of States and Transport Hydrogenated Microcrystalline Silicon --
_g19.3.3.
_tModeling Recombination in a-Si: H and & mu;c-Si: H --
_g19.3.3.1.
_tRecombination Statistics for Single-Electron States: Shockley-Read-Hall Recombination --
_g19.3.3.2.
_tRecombination Statistics for Amphoteric States --
_g19.3.4.
_tModeling Cu(In, Ga)Se2 Solar Cells --
_g19.3.4.1.
_tGraded Band-Gap Devices --
_g19.3.4.2.
_tIssues when Modeling Graded Band-Gap Devices --
_g19.3.4.3.
_tExample --
_g19.3.5.
_tModeling of CdTe Solar Cells --
_g19.3.5.1.
_tBaseline --
_g19.3.5.2.
_tThe & Phi;b -- NAc (Barrier-Doping) Trade-Off --
_g19.3.5.3.
_tC-V Analysis as an Interpretation Aid of I-V Curves --
_g19.4.
_tOptical Modeling of Thin Solar Cells --
_g19.4.1.
_tCoherent Modeling of Flat Interfaces --
_g19.4.2.
_tModeling of Rough Interfaces --
_g19.5.
_tTools --
_g19.5.1.
_tAFORS-HET --
_g19.5.2.
_tAMPS-1D --
_g19.5.3.
_tASA --
_g19.5.4.
_tPC1D --
_g19.5.5.
_tSCAPS.
505 0 0 _g19.5.6.
_tSC-SIMUL --
_tReferences --
_g20.
_tTwo- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells /
_rWyatt K. Metzger --
_g20.1.
_tIntroduction --
_g20.2.
_tApplications --
_g20.3.
_tMethods --
_g20.3.1.
_tEquivalent-Circuit Modeling --
_g20.3.2.
_tSolving Semiconductor Equations --
_g20.4.2.1.
_tCreating a Semiconductor Model --
_g20.4.
_tExamples --
_g20.4.1.
_tEquivalent-Circuit Modeling Examples --
_g20.4.2.
_tSemiconductor Modeling Examples --
_g20.5.
_tSummary --
_tReferences.
588 0 _aPrint version record.
650 0 _aPhotovoltaic cells
_xMaterials
_xResearch.
650 7 _aTECHNOLOGY & ENGINEERING
_xMechanical.
_2bisacsh
655 4 _aElectronic books.
700 1 _aRau, U.
_q(Uwe)
_4edt
700 1 _aAbou-Ras, Daniel.
_4edt
700 1 _aKirchartz, Thomas.
_4edt
776 0 8 _iPrint version:
_tAdvanced characterization techniques for thin film solar cells.
_dWeinheim, Germany : Wiley-VCH, ©2011
_z3527410031
_w(OCoLC)676728907
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9783527636280
_zWiley Online Library
942 _2ddc
_cBK
999 _c205293
_d205293