000 | 19571cam a2200793Ka 4500 | ||
---|---|---|---|
001 | ocn757401381 | ||
003 | OCoLC | ||
005 | 20171024103623.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 111017s2011 gw a ob 001 0 eng d | ||
020 |
_a9783527636303 _q(electronic bk.) |
||
020 |
_a3527636307 _q(electronic bk.) |
||
020 |
_a9783527636280 _q(electronic bk.) |
||
020 |
_a3527636285 _q(electronic bk.) |
||
020 |
_a9783527636297 _q(ePub) |
||
020 |
_a3527636293 _q(ePub) |
||
020 |
_a9783527636310 _q(Mobi) |
||
020 |
_a3527636315 _q(Mobi) |
||
020 | _z3527410031 | ||
020 | _z9783527410033 | ||
029 | 1 |
_aAU@ _b000047551147 |
|
029 | 1 |
_aDEBSZ _b347955517 |
|
029 | 1 |
_aDEBSZ _b372814980 |
|
029 | 1 |
_aDEBSZ _b430997469 |
|
029 | 1 |
_aNLGGC _b338323414 |
|
029 | 1 |
_aNZ1 _b16077594 |
|
029 | 1 |
_aDEBBG _bBV043393565 |
|
035 |
_a(OCoLC)757401381 _z(OCoLC)714799132 |
||
037 |
_a10.1002/9783527636280 _bWiley InterScience _nhttp://www3.interscience.wiley.com |
||
040 |
_aN$T _beng _epn _cN$T _dDG1 _dYDXCP _dDEBSZ _dCDX _dE7B _dOCLCQ _dEBLCP _dOCLCQ _dB24X7 _dOCLCQ _dCOO _dNLGGC _dOCLCQ _dDEBBG |
||
049 | _aMAIN | ||
050 | 4 |
_aTK8322 _b.A38 2011eb |
|
072 | 7 |
_aTEC _x009070 _2bisacsh |
|
082 | 0 | 4 |
_a621.472 _222 |
245 | 0 | 0 |
_aAdvanced characterization techniques for thin film solar cells / _cedited by Daniel Abou-Ras, Thomas Kirchartz, and Uwe Rau. _h[electronic resource] |
260 |
_aWeinheim, Germany : _bWiley-VCH, _c©2011. |
||
300 |
_a1 online resource (xxxvi, 547 pages) : _billustrations (some color) |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | 0 |
_gMachine generated contents note: _gpt. one _tIntroduction -- _g1. _tIntroduction to Thin-Film Photovoltaics / _rUwe Rau -- _g1.1. _tIntroduction -- _g1.2. _tThe Photovoltaic Principle -- _g1.2.1. _tThe Shockley-Queisser Theory -- _g1.2.2. _tFrom the Ideal Solar Cell to Real Solar Cells -- _g1.2.3. _tLight Absorption and Light Trapping -- _g1.2.4. _tCharge Extraction -- _g1.2.5. _tNonradiative Recombination -- _g1.3. _tFunctional Layers in Thin-Film Solar Cells -- _g1.4. _tComparison of Various Thin-Film Solar-Cell Types -- _g1.4.1. _tCu(In, Ga)Se2 -- _g1.4.1.1. _tBasic Properties and Technology -- _g1.4.1.2. _tLayer-Stacking Sequence and Band Diagram of the Heterostructure -- _g1.4.2. _tCdTe -- _g1.4.2.1. _tBasic Properties and Technology -- _g1.4.2.2. _tLayer-Stacking Sequence and Band Diagram of the Heterostructure -- _g1.4.3. _tThin-Film Silicon Solar Cells -- _g1.4.3.1. _tHydrogenated Amorphous Si (a-Si: H) -- _g1.4.3.2. _tMetastability in a-Si: H: The Staebler-Wronski Effect -- _g1.4.3.3. _tHydrogenated Microcrystalline Silicon (& mu;c-Si: H) -- _g1.4.3.4. _tMicromorph Tandem Solar Cells. |
505 | 0 | 0 |
_g1.5. _tConclusions -- _tReferences -- _gpt. Two _tDevice Characterization -- _g2. _tFundamental Electrical Characterization of Thin-Film Solar Cells / _rUwe Rau -- _g2.1. _tIntroduction -- _g2.2. _tCurrent/Voltage Curves -- _g2.2.1. _tShape of Current/Voltage Curves and their Description with Equivalent Circuit Models -- _g2.2.2. _tMeasurement of Current/Voltage Curves -- _g2.2.3. _tDetermination of Ideality Factors and Series Resistances -- _g2.2.4. _tTemperature-Dependent Current/Voltage Measurements -- _g2.3. _tQuantum Efficiency Measurements -- _g2.3.1. _tDefinition -- _g2.3.2. _tMeasurement Principle and Calibration -- _g2.3.3. _tQuantum Efficiency Measurements of Tandem Solar Cells -- _g2.3.4. _tDifferential Spectral Response (DSR) Measurements -- _g2.3.5. _tInterpretation of Quantum Efficiency Measurements in Thin-Film Silicon Solar Cells -- _tReferences -- _g3. _tElectroluminescence Analysis of Solar Cells and Solar Modules / _rUwe Rau -- _g3.1. _tIntroduction -- _g3.2. _tBasics -- _g3.3. _tSpectrally Resolved Electroluminescence -- _g3.4. _tSpatially Resolved Electroluminescence of c-Si Solar Cells -- _g3.5. _tElectroluminescence Imaging of Cu(In, Ga)Se2 Thin-Film Modules. |
505 | 0 | 0 |
_g3.6. _tModeling of Spatially Resolved Electroluminescence -- _tReferences -- _g4. _tCapacitance Spectroscopy of Thin-Film Solar Cells / _rPawel Zabierowski -- _g4.1. _tIntroduction -- _g4.2. _tAdmittance Basics -- _g4.3. _tSample Requirements -- _g4.4. _tInstrumentation -- _g4.5. _tCapacitance-Voltage Profiling and the Depletion Approximation -- _g4.6. _tAdmittance Response of Deep States -- _g4.7. _tThe Influence of Deep States on CV Profiles -- _g4.8. _tDLTS -- _g4.8.1. _tDLTS of Thin-Film PV Devices -- _g4.9. _tAdmittance Spectroscopy -- _g4.10. _tDrive Level Capacitance Profiling -- _g4.11. _tPhotocapacitance -- _g4.12. _tThe Meyer-Neldel Rule -- _g4.13. _tSpatial Inhomogeneities and Interface States -- _g4.14. _tMetastability -- _tReferences -- _gpt. Three _tMaterials Characterization -- _g5. _tCharacterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy / _rKarsten Bittkau -- _g5.1. _tIntroduction -- _g5.2. _tHow Does a Scanning Near-Field Optical Microscope Work? -- _g5.3. _tLight Scattering in the Wave Picture -- _g5.4. _tThe Role of Evanescent Modes for Light Trapping -- _g5.5. _tAnalysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation. |
505 | 0 | 0 |
_g5.6. _tHow to Extract Far-Field Scattering Properties by Scanning Near-Field Optical Microscopy? -- _g5.7. _tConclusion -- _tReferences -- _g6. _tSpectroscopic Ellipsometry / _rRobert W. Collins -- _g6.1. _tIntroduction -- _g6.2. _tTheory -- _g6.2.1. _tPolarized Light -- _g6.2.2. _tReflection from a Single Interface -- _g6.3. _tEllipsometry Instrumentation -- _g6.3.1. _tRotating Analyzer SE for Ex-Situ Applications -- _g6.3.2. _tRotating Compensator SE for Real-Time Applications -- _g6.4. _tData Analysis -- _g6.4.1. _tExact Numerical Inversion -- _g6.4.2. _tLeast-Squares Regression -- _g6.4.3. _tVirtual Interface Analysis -- _g6.5. _tRTSE of Thin Film Photovoltaics -- _g6.5.1. _tThin Si: H -- _g6.5.2. _tCdTe -- _g6.5.3. _tCuInSe2 -- _g6.6. _tSummary and Future -- _g6.7. _tDefinition of Variables -- _tReferences -- _g7. _tPhotoluminescence Analysis of Thin-Film Solar Cells / _rLevent Gutay -- _g7.1. _tIntroduction -- _g7.2. _tExperimental Issues -- _g7.2.1. _tDesign of the Optical System -- _g7.2.2. _tCalibration -- _g7.2.3. _tCryostat -- _g7.3. _tBasic Transitions -- _g7.3.1. _tExcitons -- _g7.3.2. _tFree-Bound Transitions -- _g7.3.3. _tDonor-Acceptor Pair Recombination -- _g7.3.4. _tPotential Fluctuations. |
505 | 0 | 0 |
_g7.3.5. _tBand-Band Transitions -- _g7.4. _tCase Studies -- _g7.4.1. _tLow-Temperature Photoluminescence Analysis -- _g7.4.2. _tRoom-Temperature Measurements: Estimation of Voc from PL Yield -- _g7.4.3. _tSpatially Resolved Photoluminescence: Absorber Inhomogeneities -- _tReferences -- _g8. _tSteady-State Photocarrier Crating Method / _rRudolf Bruggemann -- _g8.1. _tIntroduction -- _g8.2. _tBasic Analysis of SSPG and Photocurrent Response -- _g8.2.1. _tOptical Model -- _g8.2.2. _tSemiconductor Equations -- _g8.2.3. _tDiffusion Length: Ritter-Zeldov-Weiser Analysis -- _g8.2.3.1. _tEvaluation Schemes -- _g8.2.4. _tMore Detailed Analyses -- _g8.2.4.1. _tInfluence of the Dark Conductivity -- _g8.2.4.2. _tInfluence of Traps -- _g8.2.4.3. _tMinority-Carrier and Majority-Carrier Mobility-Lifetime Products -- _g8.3. _tExperimental Setup -- _g8.4. _tData Analysis -- _g8.5. _tResults -- _g8.5.1. _tHydrogenated Amorphous Silicon -- _g8.5.1.1. _tTemperature and Generation Rate Dependence -- _g8.5.1.2. _tSurface Recombination -- _g8.5.1.3. _tElectric-Field Influence -- _g8.5.1.4. _tFermi-Level Position -- _g8.5.1.5. _tDefects and Light-Induced Degradation. |
505 | 0 | 0 |
_g8.5.1.6. _tThin-Film Characterization and Deposition Methods -- _g8.5.2. _tHydrogenated Amorphous Silicon Alloys -- _g8.5.3. _tHydrogenated Microcrystalline Silicon -- _g8.5.4. _tHydrogenated Microcrystalline Germanium -- _g8.5.5. _tOther Thin-Film Semiconductors -- _g8.6. _tDensity-of-States Determination -- _g8.7. _tSummary -- _tReferences -- _g9. _tTime-of-Flight Analysis / _rTorsten Bronger -- _g9.1. _tIntroduction -- _g9.2. _tFundamentals of TOF Measurements -- _g9.2.1. _tAnomalous Dispersion -- _g9.2.2. _tBasic Electronic Properties of Thin-Film Semiconductors -- _g9.3. _tExperimental Details -- _g9.3.1. _tAccompanying Measurements -- _g9.3.1.1. _tCapacitance -- _g9.3.1.2. _tCollection -- _g9.3.1.3. _tBuilt-in Field -- _g9.3.2. _tCurrent Decay -- _g9.3.3. _tCharge Transient -- _g9.3.4. _tPossible Problems -- _g9.3.4.1. _tDielectric Relaxation -- _g9.3.5. _tInhomogeneous Field -- _g9.4. _tAnalysis of TOF Results -- _g9.4.1. _tMultiple Trapping -- _g9.4.1.1. _tOverview of the Processes -- _g9.4.1.2. _tEnergetic Distribution of Carriers -- _g9.4.1.3. _tTime Dependence of Electrical Current -- _g9.4.2. _tSpatial Charge Distribution -- _g9.4.2.1. _tTemperature Dependence. |
505 | 0 | 0 |
_g9.4.3. _tDensity of States -- _g9.4.3.1. _tWidths of Band Tails -- _g9.4.3.2. _tProbing of Deep States -- _tReferences -- _g10. _tElectron-Spin Resonance (ESR) in Hydrogenated Amorphous Silicon (a-Si: H) / _rJan Behrends -- _g10.1. _tIntroduction -- _g10.2. _tBasics of ESR -- _g10.3. _tHow to Measure ESR -- _g10.3.1. _tESR Setup and Measurement Procedure -- _g10.3.2. _tPulse ESR -- _g10.3.3. _tSample Preparation -- _g10.4. _tThe g Tensor and Hyperfine Interaction in Disordered Solids -- _g10.4.1. _tZeeman Energy and g Tensor -- _g10.4.2. _tHyperfine Interaction -- _g10.4.3. _tLine-Broadening Mechanisms -- _g10.5. _tDiscussion of Selected Results -- _g10.5.1. _tESR on Undoped a-Si: H -- _g10.5.2. _tLESR on Undoped a-Si: H -- _g10.5.3. _tESR on Doped a-Si: H -- _g10.5.4. _tLight-Induced Degradation in a-Si: H -- _g10.5.4.1. _tExcess Charge-Carrier Recombination and Weak Si-Si Bond Breaking -- _g10.5.4.2. _tSi-H Bond Dissociation and Hydrogen Collision Model -- _g10.5.4.3. _tTransformation of Existing Nonparamagnetic Charged Dangling-Bond Defects -- _g10.6. _tAlternative ESR Detection -- _g10.6.1. _tHistory of EDMR -- _g10.6.2. _tEDMR on a-Si: H Solar Cells. |
505 | 0 | 0 |
_g10.7. _tConcluding Remarks -- _tReferences -- _g11. _tScanning Probe Microscopy on Inorganic Thin Films for Solar Cells / _rIris Visoly-Fisher -- _g11.1. _tIntroduction -- _g11.2. _tExperimental Background -- _g11.2.1. _tAtomic Force Microscopy -- _g11.2.1.1. _tContact Mode -- _g11.2.1.2. _tNoncontact Mode -- _g11.2.2. _tConductive Atomic Force Microscopy -- _g11.2.3. _tScanning Capacitance Microscopy -- _g11.2.4. _tKelvin Probe Force Microscopy -- _g11.2.5. _tScanning Tunneling Microscopy -- _g11.2.6. _tIssues of Sample Preparation -- _g11.3. _tSelected Applications -- _g11.3.1. _tSurface Homogeneity -- _g11.3.2. _tGrain Boundaries -- _g11.3.3. _tCross-Sectional Studies -- _g11.4. _tSummary -- _tReferences -- _g12. _tElectron Microscopy on Thin Films for Solar Cells / _rSebastian S. Schmidt -- _g12.1. _tIntroduction -- _g12.2. _tScanning Electron Microscopy -- _g12.2.1. _tImaging Techniques -- _g12.2.2. _tElectron Backscatter Diffraction -- _g12.2.3. _tEnergy-Dispersive and Wavelength-Dispersive X-Ray Spectrometry -- _g12.2.4. _tElectron-Beam-Induced Current Measurements -- _g12.2.4.1. _tElectron-Beam Generation -- _g12.2.4.2. _tCharge-Carrier Collection in a Solar Cell. |
505 | 0 | 0 |
_g12.2.4.3. _tExperimental Setups -- _g12.2.4.4. _tCritical Issues -- _g12.2.5. _tCathodoluminescence -- _g12.2.5.1. _tExample: Spectrum Imaging of CdTe Thin Films -- _g12.2.6. _tScanning Probe and Scanning-Probe Microscopy Integrated Platform -- _g12.2.7. _tCombination of Various Scanning Electron Microscopy Techniques -- _g12.3. _tTransmission Electron Microscopy -- _g12.3.1. _tImaging Techniques -- _g12.3.1.1. _tBright-Field and Dark-Field Imaging in the Conventional Mode -- _g12.3.1.2. _tHigh-Resolution Imaging in the Conventional Mode -- _g12.3.1.3. _tImaging in the Scanning Mode Using an Annular Dark-Field Detector -- _g12.3.2. _tElectron Diffraction. |
505 | 0 | 0 |
_gNote continued: _g12.3.2.1. _tSelected-Area Electron Diffraction in the Conventional Mode -- _g12.3.2.2. _tConvergent-Beam Electron Diffraction in the Scanning Mode -- _g12.3.3. _tElectron Energy-Loss Spectrometry and Energy-Filtered Transmission Electron Microscopy -- _g12.3.3.1. _tScattering Theory -- _g12.3.3.2. _tExperiment and Setup -- _g12.3.3.3. _tThe Energy-Loss Spectrum -- _g12.3.3.4. _tApplications and Comparison with EDX Spectroscopy -- _g12.3.4. _tOff-Axis and In-Line Electron Holography -- _g12.4. _tSample Preparation Techniques -- _g12.4.1. _tPreparation for Scanning Electron Microscopy -- _g12.4.2. _tPreparation for Transmission Electron Microscopy -- _tReferences -- _g13. _tX-Ray and Neutron Diffraction on Materials for Thin-Film Solar Cells / _rRoland Mainz -- _g13.1. _tIntroduction -- _g13.2. _tDiffraction of X-Rays and Neutron by Matter -- _g13.3. _tNeutron Powder Diffraction of Absorber Materials for Thin-Film Solar Cells -- _g13.3.1. _tExample: Investigation of Intrinsic Point Defects in Nonstoichiometric CuInSe2 by Neutron Diffraction. |
505 | 0 | 0 |
_g13.4. _tGrazing Incidence X-Ray Diffraction (GIXRD) -- _g13.5. _tEnergy Dispersive X-Ray Diffraction (EDXRD) -- _tReferences -- _g14. _tRaman Spectroscopy on Thin Films for Solar Cells / _rAlejandro Perez-Rodriguez -- _g14.1. _tIntroduction -- _g14.2. _tFundamentals of Raman Spectroscopy -- _g14.3. _tVibrational Modes in Crystalline Materials -- _g14.4. _tExperimental Considerations -- _g14.4.1. _tLaser Source -- _g14.4.2. _tLight Collection and Focusing Optics -- _g14.4.3. _tSpectroscopic Module -- _g14.5. _tCharacterization of Thin-Film Photovoltaic Materials -- _g14.5.1. _tIdentification of Crystalline Structures -- _g14.5.2. _tEvaluation of Film Crystallinity -- _g14.5.3. _tChemical Analysis of Semiconducting Alloys -- _g14.5.4. _tNanocrystalline and Amorphous Materials -- _g14.5.5. _tEvaluation of Stress -- _g14.6. _tConclusions -- _tReferences -- _g15. _tSoft X-Ray and Electron Spectroscopy: A Unique "Tool Chest" to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces / _rClemens Heske -- _g15.1. _tIntroduction -- _g15.2. _tCharacterization Techniques -- _g15.3. _tProbing the Chemical Surface Structure: Impact of Wet Chemical Treatments on Thin-Film Solar Cell Absorbers. |
505 | 0 | 0 |
_g15.4. _tProbing the Electronic Surface and Interface Structure: Band Alignment in Thin-Film Solar Cells -- _g15.5. _tSummary -- _tReferences -- _g16. _tElemental Distribution Profiling of Thin Films for Solar Cells / _rRaquel Caballero -- _g16.1. _tIntroduction -- _g16.2. _tGlow Discharge-Optical Emission (GD-OES) and Glow Discharge-Mass Spectroscopy (GD-MS) -- _g16.2.1. _tPrinciples -- _g16.2.2. _tInstrumentation -- _g16.2.2.1. _tPlasma Sources -- _g16.2.2.2. _tPlasma Conditions -- _g16.2.2.3. _tDetection of Optical Emission -- _g16.2.2.4. _tMass Spectroscopy -- _g16.2.3. _tQuantification -- _g16.2.3.1. _tGlow Discharge-Optical Emission Spectroscopy -- _g16.2.3.2. _tGlow Discharge-Mass Spectroscopy -- _g16.2.4. _tApplications -- _g16.2.4.1. _tGlow Discharge-Optical Emission Spectroscopy -- _g16.2.4.2. _tGlow Discharge-Mass Spectroscopy -- _g16.3. _tSecondary Ion Mass Spectrometry (SIMS) -- _g16.3.1. _tPrinciple of the Method -- _g16.3.2. _tData Analysis -- _g16.3.3. _tQuantification -- _g16.3.4. _tApplications for Solar Cells -- _g16.4. _tAuger Electron Spectroscopy (AES) -- _g16.4.1. _tIntroduction -- _g16.4.2. _tThe Auger Process -- _g16.4.3. _tAuger Electron Signals. |
505 | 0 | 0 |
_g16.4.4. _tInstrumentation -- _g16.4.5. _tAuger Electron Signal Intensities and Quantification -- _g16.4.6. _tQuantification -- _g16.4.7. _tApplication -- _g16.5. _tX-Ray Photoelectron Spectroscopy (XPS) -- _g16.5.1. _tTheoretical Principles -- _g16.5.2. _tInstrumentation -- _g16.5.3. _tApplication to Thin Film Solar Cells -- _g16.6. _tEnergy-Dispersive X-Ray Analysis on Fractured Cross Sections -- _g16.6.1. _tBasics on Energy-Dispersive X-Ray Spectrometry in a Scanning Electron Microscope -- _g16.6.2. _tSpatial Resolutions -- _g16.6.3. _tApplications -- _g16.6.3.1. _tSample Preparation -- _tReferences -- _g17. _tHydrogen Effusion Experiments / _rFlorian Einsele -- _g17.1. _tIntroduction -- _g17.2. _tExperimental Setup -- _g17.3. _tData Analysis -- _g17.3.1. _tIdentification of Rate-Limiting Process -- _g17.3.2. _tAnalysis of Diffusing Hydrogen Species from Hydrogen Effusion Measurements -- _g17.3.3. _tAnalysis of H2 Surface Desorption -- _g17.3.4. _tAnalysis of Diffusion-Limited Effusion -- _g17.3.5. _tAnalysis of Effusion Spectra in Terms of Hydrogen Density of States -- _g17.3.6. _tAnalysis of Film Microstructure by Effusion of Implanted Rare Gases. |
505 | 0 | 0 |
_g17.4. _tDiscussion of Selected Results -- _g17.4.1. _tAmorphous Silicon and Germanium Films -- _g17.4.1.1. _tMaterial Density versus Annealing and Hydrogen Content -- _g17.4.1.2. _tEffect of Doping on H Effusion -- _g17.4.2. _tAmorphous Silicon Alloys: Si-C -- _g17.4.3. _tMicrocrystalline Silicon -- _g17.4.4. _tZinc Oxide Films -- _g17.5. _tComparison with Other Experiments -- _g17.6. _tConcluding Remarks -- _tReferences -- _gpt. Four _tMaterials and Device Modeling -- _g18. _tAb-Initio Modeling of Defects in Semiconductors / _rJohan Pohl -- _g18.1. _tIntroduction -- _g18.2. _tDensity Functional Theory and Methods -- _g18.2.1. _tBasis Sets -- _g18.2.2. _tFunctionals for Exchange and Correlation -- _g18.2.2.1. _tLocal Approximations -- _g18.2.2.2. _tFunctionals Beyond LDA/GGA -- _g18.3. _tMethods Beyond DFT -- _g18.4. _tFrom Total Energies to Materials' Properties -- _g18.5. _tAb-initio Characterization of Point Defects -- _g18.5.1. _tThermodynamics of Point Defects -- _g18.5.2. _tFormation Energies from Ab-Initio Calculations -- _g18.5.3. _tCase study Point Defects in ZnO -- _g18.6. _tConclusions -- _tReferences -- _g19. _tOne-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells / _rThomas Kirchartz. |
505 | 0 | 0 |
_g19.1. _tIntroduction -- _g19.2. _tFundamentals -- _g19.3. _tModeling Hydrogenated Amorphous and Microcrystalline Silicon -- _g19.3.1. _tDensity of States and Transport Hydrogenated Amorphous Silicon -- _g19.3.2. _tDensity of States and Transport Hydrogenated Microcrystalline Silicon -- _g19.3.3. _tModeling Recombination in a-Si: H and & mu;c-Si: H -- _g19.3.3.1. _tRecombination Statistics for Single-Electron States: Shockley-Read-Hall Recombination -- _g19.3.3.2. _tRecombination Statistics for Amphoteric States -- _g19.3.4. _tModeling Cu(In, Ga)Se2 Solar Cells -- _g19.3.4.1. _tGraded Band-Gap Devices -- _g19.3.4.2. _tIssues when Modeling Graded Band-Gap Devices -- _g19.3.4.3. _tExample -- _g19.3.5. _tModeling of CdTe Solar Cells -- _g19.3.5.1. _tBaseline -- _g19.3.5.2. _tThe & Phi;b -- NAc (Barrier-Doping) Trade-Off -- _g19.3.5.3. _tC-V Analysis as an Interpretation Aid of I-V Curves -- _g19.4. _tOptical Modeling of Thin Solar Cells -- _g19.4.1. _tCoherent Modeling of Flat Interfaces -- _g19.4.2. _tModeling of Rough Interfaces -- _g19.5. _tTools -- _g19.5.1. _tAFORS-HET -- _g19.5.2. _tAMPS-1D -- _g19.5.3. _tASA -- _g19.5.4. _tPC1D -- _g19.5.5. _tSCAPS. |
505 | 0 | 0 |
_g19.5.6. _tSC-SIMUL -- _tReferences -- _g20. _tTwo- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells / _rWyatt K. Metzger -- _g20.1. _tIntroduction -- _g20.2. _tApplications -- _g20.3. _tMethods -- _g20.3.1. _tEquivalent-Circuit Modeling -- _g20.3.2. _tSolving Semiconductor Equations -- _g20.4.2.1. _tCreating a Semiconductor Model -- _g20.4. _tExamples -- _g20.4.1. _tEquivalent-Circuit Modeling Examples -- _g20.4.2. _tSemiconductor Modeling Examples -- _g20.5. _tSummary -- _tReferences. |
588 | 0 | _aPrint version record. | |
650 | 0 |
_aPhotovoltaic cells _xMaterials _xResearch. |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING _xMechanical. _2bisacsh |
|
655 | 4 | _aElectronic books. | |
700 | 1 |
_aRau, U. _q(Uwe) _4edt |
|
700 | 1 |
_aAbou-Ras, Daniel. _4edt |
|
700 | 1 |
_aKirchartz, Thomas. _4edt |
|
776 | 0 | 8 |
_iPrint version: _tAdvanced characterization techniques for thin film solar cells. _dWeinheim, Germany : Wiley-VCH, ©2011 _z3527410031 _w(OCoLC)676728907 |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9783527636280 _zWiley Online Library |
942 |
_2ddc _cBK |
||
999 |
_c205293 _d205293 |