000 | 06028cam a2200721Ia 4500 | ||
---|---|---|---|
001 | ocn784952441 | ||
003 | OCoLC | ||
005 | 20171115082607.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120409s2012 njua ob 001 0 eng d | ||
010 | _a 2011039044 | ||
020 |
_a9781118218457 _q(electronic bk.) |
||
020 |
_a1118218450 _q(electronic bk.) |
||
020 |
_a9781118218426 _q(electronic bk.) |
||
020 |
_a1118218426 _q(electronic bk.) |
||
020 |
_z9781118072059 _q(cloth) |
||
020 |
_z1118072057 _q(cloth) |
||
024 | 8 | _a9786613618191 | |
029 | 1 |
_aAU@ _b000049117486 |
|
029 | 1 |
_aDEBBG _bBV040883843 |
|
029 | 1 |
_aDEBSZ _b372710913 |
|
029 | 1 |
_aDEBSZ _b397177402 |
|
029 | 1 |
_aDKDLA _b820120-katalog:000599612 |
|
029 | 1 |
_aNZ1 _b14690905 |
|
029 | 1 |
_aNZ1 _b15350976 |
|
035 |
_a(OCoLC)784952441 _z(OCoLC)784883586 _z(OCoLC)794619794 _z(OCoLC)961599377 _z(OCoLC)962604337 |
||
037 |
_a361819 _bMIL |
||
040 |
_aN$T _beng _epn _cN$T _dCUS _dYDXCP _dDG1 _dCDX _dCOO _dE7B _dOCLCQ _dDEBSZ _dOCLCQ _dIUL _dOCLCF _dOCLCQ _dEBLCP _dCN3GA _dOCLCQ _dAZK |
||
049 | _aMAIN | ||
050 | 4 |
_aQA214 _b.C69 2012eb |
|
072 | 7 |
_aMAT _x002040 _2bisacsh |
|
082 | 0 | 4 |
_a512/.32 _223 |
100 | 1 | _aCox, David A. | |
245 | 1 | 0 |
_aGalois theory / _cDavid A. Cox. _h[electronic resource] |
250 | _a2nd ed. | ||
260 |
_aHoboken, NJ : _bJohn Wiley & Sons, _c©2012. |
||
300 |
_a1 online resource (xxviii, 570 pages) : _billustrations. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_adata file _2rda |
||
380 | _aBibliography | ||
490 | 1 | _aPure and aplied mathematics | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aGalois Theory; CONTENTS; Preface to the First Edition; Preface to the Second Edition; Notation; 1 Basic Notation; 2 Chapter-by-Chapter Notation; PART I POLYNOMIALS; 1 Cubic Equations; 1.1 Cardan's Formulas; Historical Notes; 1.2 Permutations of the Roots; A Permutations; B The Discriminant; C Symmetric Polynomials; Mathematical Notes; Historical Notes; 1.3 Cubic Equations over the Real Numbers; A The Number of Real Roots; B Trigonometric Solution of the Cubic; Historical Notes; References; 2 Symmetric Polynomials; 2.1 Polynomials of Several Variables; A The Polynomial Ring in n Variables. | |
505 | 8 | _aB The Elementary Symmetric PolynomialsMathematical Notes; 2.2 Symmetric Polynomials; A The Fundamental Theorem; B The Roots of a Polynomial; C Uniqueness; Mathematical Notes; Historical Notes; 2.3 Computing with Symmetric Polynomials (Optional); A Using Mathematica; B Using Maple; 2.4 The Discriminant; Mathematical Notes; Historical Notes; References; 3 Roots of Polynomials; 3.1 The Existence of Roots; Mathematical Notes; Historical Notes; 3.2 The Fundamental Theorem of Algebra; Mathematical Notes; Historical Notes; References; PART II FIELDS; 4 Extension Fields. | |
505 | 8 | _a4.1 Elements of Extension FieldsA Minimal Polynomials; B Adjoining Elements; Mathematical Notes; Historical Notes; 4.2 Irreducible Polynomials; A Using Maple and Mathematica; B Algorithms for Factoring; C The Schönemann-Eisenstein Criterion; D Prime Radicals; Historical Notes; 4.3 The Degree of an Extension; A Finite Extensions; B The Tower Theorem; Mathematical Notes; Historical Notes; 4.4 Algebraic Extensions; Mathematical Notes; References; 5 Normal and Separable Extensions; 5.1 Splitting Fields; A Definition and Examples; B Uniqueness; 5.2 Normal Extensions; Historical Notes. | |
505 | 8 | _a5.3 Separable ExtensionsA Fields of Characteristic 0; B Fields of Characteristic p; C Computations; Mathematical Notes; 5.4 Theorem of the Primitive Element; Mathematical Notes; Historical Notes; References; 6 The Galois Group; 6.1 Definition of the Galois Group; Historical Notes; 6.2 Galois Groups of Splitting Fields; 6.3 Permutations of the Roots; Mathematical Notes; Historical Notes; 6.4 Examples of Galois Groups; A The pth Roots of 2; B The Universal Extension; C A Polynomial of Degree 5; Mathematical Notes; Historical Notes; 6.5 Abelian Equations (Optional); Historical Notes; References. | |
505 | 8 | _a7 The Galois Correspondence7.1 Galois Extensions; A Splitting Fields of Separable Polynomials; B Finite Separable Extensions; C Galois Closures; Historical Notes; 7.2 Normal Subgroups and Normal Extensions; A Conjugate Fields; B Normal Subgroups; Mathematical Notes; Historical Notes; 7.3 The Fundamental Theorem of Galois Theory; 7.4 First Applications; A The Discriminant; B The Universal Extension; C The Inverse Galois Problem; Historical Notes; 7.5 Automorphisms and Geometry (Optional); A Groups of Automorphisms; B Function Fields in One Variable; C Linear Fractional Transformations. | |
520 | _aPraise for the First Edition". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!" & mdash;Monatshefte fur MathematikGalois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel & rsquo;s theory of Abelian equations, casus irreducibili, and the Galois. | ||
588 | 0 | _aPrint version record. | |
650 | 0 | _aGalois theory. | |
650 | 4 | _aGalois theory. | |
650 | 4 | _aMathematics. | |
650 | 7 |
_aMATHEMATICS _xAlgebra _xIntermediate. _2bisacsh |
|
650 | 7 |
_aGalois theory. _2fast _0(OCoLC)fst00937326 |
|
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aCox, David A. _tGalois theory. _b2nd ed. _dHoboken, N.J. : John Wiley & Sons, ©2012 _z9781118072059 _w(DLC) 2011039044 _w(OCoLC)755640849 |
830 | 0 | _aPure and applied mathematics (John Wiley & Sons : Unnumbered) | |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9781118218457 _zWiley Online Library |
942 |
_2ddc _cBK |
||
999 |
_c205801 _d205801 |