000 08806cam a2200805 a 4500
001 ocn794922820
003 OCoLC
005 20171114091428.0
006 m o d
007 cr |n|||||||||
008 120605s2012 enk sb 001 0 eng
010 _a 2012023036
016 7 _a013735766
_2Uk
020 _a9780470517246 (Adobe PDF)
020 _a0470517247 (Adobe PDF)
020 _a9781118381267 (Adobe PDF)
020 _a1118381262 (Adobe PDF)
020 _a9781118381274 ( MobiPocket)
020 _a1118381270 ( MobiPocket)
020 _z9781119978299 (hardback)
020 _a9780470517253
020 _a0470517255
020 _z9780470028193
020 _z047002819X
024 8 _a9786613862228
029 1 _aAU@
_b000049296052
029 1 _aAU@
_b000051432786
029 1 _aCHNEW
_b000620688
029 1 _aDEBBG
_bBV041121546
029 1 _aDEBSZ
_b396764614
029 1 _aNZ1
_b14695735
029 1 _aNZ1
_b15340856
029 1 _aDEBBG
_bBV043394589
035 _a(OCoLC)794922820
_z(OCoLC)811407600
_z(OCoLC)840106463
_z(OCoLC)872693662
_z(OCoLC)961624272
_z(OCoLC)962694403
_z(OCoLC)966221768
037 _aCL0500000211
_bSafari Books Online
037 _a00205A11-1900-41C3-B18E-879B09A6702A
_bOverDrive, Inc.
_nhttp://www.overdrive.com
040 _aDLC
_beng
_cDLC
_dYDX
_dCOO
_dN$T
_dDG1
_dYDXCP
_dUKMGB
_dE7B
_dUMI
_dUBY
_dTEFOD
_dDEBSZ
_dOCLCF
_dLRU
_dCNSPO
_dDKDLA
_dDEBBG
_dAZK
_dOCLCQ
_dRECBK
_dLOA
042 _apcc
049 _aMAIN
050 0 0 _aQA278
072 7 _aMAT
_x029020
_2bisacsh
082 0 0 _a519.5/35
_223
084 _aMAT029020
_2bisacsh
100 1 _aKrüger, Uwe,
_cDr.
245 1 0 _aStatistical monitoring of complex multivariate processes : with applications in industrial process control /
_cUwe Kruger and Lei Xie.
_h[electronic resource]
260 _aChichester, West Sussex ;
_aHoboken, N.J. :
_bWiley,
_c2012.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
380 _aBibliography
490 1 _aStatistics in practice
504 _aIncludes bibliographical references and index.
505 8 _aMachine generated contents note: Preface Introduction I Fundamentals of Multivariate Statistical Process Control 1 Motivation for Multivariate Statistical Process Control 1.1 Summary of Statistical Process Control 1.1.1 Roots and Evolution of Statistical Process Control 1.1.2 Principles of Statistical Process Control 1.1.3 Hypothesis Testing, Type I and II errors 1.2 Why Multivariate Statistical Process Control 1.2.1 Statistically Uncorrelated Variables 1.2.2 Perfectly Correlated Variables 1.2.3 Highly Correlated Variables 1.2.4 Type I and II Errors and Dimension Reduction 1.3 Tutorial Session 2 Multivariate Data Modeling Methods 2.1 Principal Component Analysis 2.1.1 Assumptions for Underlying Data Structure 2.1.2 Geometric Analysis of Data Structure 2.1.3 A Simulation Example 2.2 Partial Least Squares 2.2.1 Assumptions for Underlying Data Structure 2.2.2 Deflation Procedure for Estimating Data Models 2.2.3 A Simulation Example 2.3 Maximum Redundancy Partial Least Squares 2.3.1 Assumptions for Underlying Data Structure 2.3.2 Source Signal Estimation 2.3.3 Geometric Analysis of Data Structure 2.3.4 A Simulation Example 2.4 Estimating the Number of Source Signals 2.4.1 Stopping Rules for PCA Models 2.4.2 Stopping Rules for PLS Models 2.5 Tutorial Session 3 Process Monitoring Charts 3.1 Fault Detection 3.1.1 Scatter Diagrams 3.1.2 Nonnegative Quadratic Monitoring Statistics 3.2 Fault Isolation and Identification 3.2.1 Contribution Charts 3.2.2 Residual-Based Tests 3.2.3 Variable Reconstruction 3.3 Geometry of Variable Projections 3.3.1 Linear Dependency of Projection Residuals 3.3.2 Geometric Analysis of Variable Reconstruction 3.4 Tutorial Session II Application Studies 4 Application to a Chemical Reaction Process 4.1 Process Description 4.2 Identification of a Monitoring Model 4.3 Diagnosis of a Fault Condition 5 Application to a Distillation Process 5.1 Process Description 5.2 Identification of a Monitoring Model 5.3 Diagnosis of a Fault Condition III Advances in Multivariate Statistical Process Control 6 Further Modeling Issues 6.1 Accuracy of Estimating PCA Models 6.1.1 Revisiting the Eigendecomposition of Sz0z0 6.1.2 Two Illustrative Examples 6.1.3 Maximum Likelihood PCA for Known Sgg 6.1.4 Maximum Likelihood PCA for Unknown Sgg 6.1.5 A Simulation Example 6.1.6 A Stopping Rule for Maximum Likelihood PCA Models 6.1.7 Properties of Model and Residual Subspace Estimates 6.1.8 Application to a Chemical Reaction Process -- Revisited 6.2 Accuracy of Estimating PLS Models 6.2.1 Bias and Variance of Parameter Estimation 6.2.2 Comparing Accuracy of PLS and OLS Regression Models 6.2.3 Impact of Error-in-Variables Structure upon PLS Models 6.2.4 Error-in-Variable Estimate for Known See 6.2.5 Error-in-Variable Estimate for Unknown See 6.2.6 Application to a Distillation Process -- Revisited 6.3 Robust Model Estimation 6.3.1 Robust Parameter Estimation 6.3.2 Trimming Approaches 6.4 Small Sample Sets 6.5 Tutorial Session 7 Monitoring Multivariate Time-Varying Processes 7.1 Problem Analysis 7.2 Recursive Principal Component Analysis 7.3 MovingWindow Principal Component Analysis 7.3.1 Adapting the Data Correlation Matrix 7.3.2 Adapting the Eigendecomposition 7.3.3 Computational Analysis of the Adaptation Procedure 7.3.4 Adaptation of Control Limits 7.3.5 Process Monitoring using an Application Delay 7.3.6 MinimumWindow Length 7.4 A Simulation Example 7.4.1 Data Generation 7.4.2 Application of PCA 7.4.3 Utilizing MWPCA based on an Application Delay 7.5 Application to a Fluid Catalytic Cracking Unit 7.5.1 Process Description 7.5.2 Data Generation 7.5.3 Pre-analysis of Simulated Data 7.5.4 Application of PCA 7.5.5 Application of MWPCA 7.6 Application to a Furnace Process 7.6.1 Process Description 7.6.2 Description of Sensor Bias 7.6.3 Application of PCA 7.6.4 Utilizing MWPCA based on an Application Delay 7.7 Adaptive Partial Least Squares 7.7.1 Recursive Adaptation of Sx0x0 and Sx0y0 7.7.2 MovingWindow Adaptation of Sv0v0 and Sv0y0 7.7.3 Adapting The Number of Source Signals 7.7.4 Adaptation of the PLS Model 7.8 Tutorial Session 8 Monitoring Changes in Covariance Structure 8.1 Problem Analysis 8.1.1 First Intuitive Example 8.1.2 Generic Statistical Analysis 8.1.3 Second Intuitive Example 8.2 Preliminary Discussion of Related Techniques 8.3 Definition of Primary and Improved Residuals 8.3.1 Primary Residuals for Eigenvectors 8.3.2 Primary Residuals for Eigenvalues 8.3.3 Comparing both Types of Primary Residuals 8.3.4 Statistical Properties of Primary Residuals 8.3.5 Improved Residuals for Eigenvalues 8.4 Revisiting the Simulation Examples in Section 8.1 8.4.1 First Simulation Example 8.4.2 Second Simulation Example 8.5 Fault Isolation and Identification 8.5.1 Diagnosis of Step-Type Fault Conditions 8.5.2 Diagnosis of General Deterministic Fault Conditions 8.5.3 A Simulation Example 8.6 Application Study to a Gearbox System 8.6.1 Process Description 8.6.2 Fault Description 8.6.3 Identification of a Monitoring Model 8.6.4 Detecting a Fault Condition 8.7 Analysis of Primary and Improved Residuals 8.7.1 Central Limit Theorem 8.7.2 Further Statistical Properties of Primary Residuals 8.7.3 Sensitivity of Statistics based on Improved Residuals 8.8 Tutorial Session IV Description of Modeling Methods 9 Principal Component Analysis 9.1 The Core Algorithm 9.2 Summary of the PCA Algorithm 9.3 Properties of a PCA Model 10 Partial Least Squares 10.1 Preliminaries 10.2 The Core Algorithm 10.3 Summary of the PLS Algorithm10.4 Properties of PLS 10.5 Properties of Maximum Redundancy PLS References Index .
520 _a"The book summarises recent advances in statistical-based process monitoring of complex multivariate process systems"--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher.
650 0 _aMultivariate analysis.
650 7 _aMATHEMATICS / Probability & Statistics / Multivariate Analysis.
_2bisacsh
650 4 _aMultivariate analysis.
650 7 _aMultivariate analysis.
_2fast
_0(OCoLC)fst01029105
650 7 _aMultivariate analysis.
_2local
655 4 _aElectronic books.
655 7 _aElectronic books.
_2local
700 1 _aXie, Lei.
776 0 8 _iPrint version:
_aKrüger, Uwe, Dr.
_tAdvances in statistical monitoring of complex multivariate processes
_dChichester, West Sussex ; Hoboken, N.J. : Wiley, 2012
_z9781119978299 (hardback)
_w(DLC) 2012016445
830 0 _aStatistics in practice.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9780470517253
_zWiley Online Library
942 _2ddc
_cBK
999 _c205946
_d205946