000 05655cam a2200649Mu 4500
001 ocn827207941
003 OCoLC
005 20171112084143.0
006 m o d
007 cr cnu---unuuu
008 130211s2012 enk o 000 0 eng d
020 _a9781118555286
_q(electronic bk.)
020 _a1118555287
_q(electronic bk.)
020 _a9781118555552
_q(electronic bk.)
020 _a1118555554
_q(electronic bk.)
029 1 _aAU@
_b000051629276
029 1 _aCHBIS
_b010026754
029 1 _aCHVBK
_b306230836
029 1 _aDEBSZ
_b431330956
029 1 _aGBVCP
_b79020648X
029 1 _aNZ1
_b15915387
029 1 _aDEBBG
_bBV043395376
035 _a(OCoLC)827207941
040 _aEBLCP
_beng
_epn
_cEBLCP
_dN$T
_dOCLCQ
_dOCLCO
_dYDXCP
_dDG1
_dOHI
_dOCLCF
_dUKDOC
_dOCLCQ
_dDEBSZ
_dOCLCQ
_dDEBBG
049 _aMAIN
050 4 _aQA276 .G384 2012
072 7 _aMAT
_x029000
_2bisacsh
082 0 4 _a519.50285
100 1 _aGivens, Geof H.
245 1 0 _aComputational Statistics /
_h[electronic resource]
250 _a2nd ed.
260 _aChicester :
_bWiley,
_c2012.
300 _a1 online resource (491 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aWiley Series in Computational Statistics
505 0 _aCOMPUTATIONAL STATISTICS; CONTENTS; PREFACE; ACKNOWLEDGMENTS; 1 REVIEW; 1.1 Mathematical Notation; 1.2 Taylor's Theorem and Mathematical Limit Theory; 1.3 Statistical Notation and Probability Distributions; 1.4 Likelihood Inference; 1.5 Bayesian Inference; 1.6 Statistical Limit Theory; 1.7 Markov Chains; 1.8 Computing; PART I: OPTIMIZATION; 2 OPTIMIZATION AND SOLVING NONLINEAR EQUATIONS; 2.1 Univariate Problems; 2.1.1 Newton's Method; 2.1.1.1 Convergence Order; 2.1.2 Fisher Scoring; 2.1.3 Secant Method; 2.1.4 Fixed-Point Iteration; 2.1.4.1 Scaling; 2.2 Multivariate Problems.
505 8 _a2.2.1 Newton's Method and Fisher Scoring; 2.2.1.1 Iteratively Reweighted Least Squares; 2.2.2 Newton-Like Methods; 2.2.2.1 Ascent Algorithms; 2.2.2.2 Discrete Newton and Fixed-Point Methods; 2.2.2.3 Quasi-Newton Methods; 2.2.3 Gauss-Newton Method; 2.2.4 Nelder-Mead Algorithm; 2.2.5 Nonlinear Gauss-Seidel Iteration; Problems; 3 COMBINATORIAL OPTIMIZATION; 3.1 Hard Problems and NP-Completeness; 3.1.1 Examples; 3.1.2 Need for Heuristics; 3.2 Local Search; 3.3 Simulated Annealing; 3.3.1 Practical Issues; 3.3.1.1 Neighborhoods and Proposals; 3.3.1.2 Cooling Schedule and Convergence.
505 8 _a3.3.2 Enhancements; 3.4 Genetic Algorithms; 3.4.1 Definitions and the Canonical Algorithm; 3.4.1.1 Basic Definitions; 3.4.1.2 Selection Mechanisms and Genetic Operators; 3.4.1.3 Allele Alphabets and Genotypic Representation; 3.4.1.4 Initialization, Termination, and Parameter Values; 3.4.2 Variations; 3.4.2.1 Fitness; 3.4.2.2 Selection Mechanisms and Updating Generations; 3.4.2.3 Genetic Operators and Permutation Chromosomes; 3.4.3 Initialization and Parameter Values; 3.4.4 Convergence; 3.5 Tabu Algorithms; 3.5.1 Basic Definitions; 3.5.2 The Tabu List; 3.5.3 Aspiration Criteria.
505 8 _a3.5.4 Diversification; 3.5.5 Intensification; 3.5.6 Comprehensive Tabu Algorithm; Problems; 4 EM OPTIMIZATION METHODS; 4.1 Missing Data, Marginalization, and Notation; 4.2 The EM Algorithm; 4.2.1 Convergence; 4.2.2 Usage in Exponential Families; 4.2.3 Variance Estimation; 4.2.3.1 Louis's Method; 4.2.3.2 SEM Algorithm; 4.2.3.3 Bootstrapping; 4.2.3.4 Empirical Information; 4.2.3.5 Numerical Differentiation; 4.3 EM Variants; 4.3.1 Improving the E Step; 4.3.1.1 Monte Carlo EM; 4.3.2 Improving the M Step; 4.3.2.1 ECM Algorithm; 4.3.2.2 EM Gradient Algorithm; 4.3.3 Acceleration Methods.
505 8 _a4.3.3.1 Aitken Acceleration; 4.3.3.2 Quasi-Newton Acceleration; Problems; PART II: INTEGRATION AND SIMULATION; 5 NUMERICAL INTEGRATION; 5.1 Newton-Côtes Quadrature; 5.1.1 Riemann Rule; 5.1.2 Trapezoidal Rule; 5.1.3 Simpson's Rule; 5.1.4 General kth-Degree Rule; 5.2 Romberg Integration; 5.3 Gaussian Quadrature; 5.3.1 Orthogonal Polynomials; 5.3.2 The Gaussian Quadrature Rule; 5.4 Frequently Encountered Problems; 5.4.1 Range of Integration; 5.4.2 Integrands with Singularities or Other Extreme Behavior; 5.4.3 Multiple Integrals; 5.4.4 Adaptive Quadrature; 5.4.5 Software for Exact Integration Problems.
520 _aThis new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field: Optimization, Integration and Simulation, Bootstrapping, Density Estimation and Smoothing. Within these sections, each chapter includes a comprehensive introduction and step-by-step implementation summaries to accompany the explanations of key methods. The new edition includes updated coverage and existing topics as well as new topics.
588 0 _aPrint version record.
650 0 _aMathematical statistics
_xData processing.
650 4 _aComputational statistics.
650 4 _aProbabilities
_xData processing.
650 4 _aStatistics
_xData processing.
650 7 _aMATHEMATICS
_xProbability & Statistics
_xGeneral.
_2bisacsh
650 7 _aMathematical statistics
_xData processing.
_2fast
_0(OCoLC)fst01012133
655 4 _aElectronic books.
700 1 _aHoeting, Jennifer A.
_q(Jennifer Ann),
_d1966-
776 0 8 _iPrint version:
_aGivens, Geof H.
_tComputational Statistics.
_dChicester : Wiley, ©2012
_z9780470533314
830 0 _aWiley series in computational statistics.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118555552
_zWiley Online Library
942 _2ddc
_cBK
999 _c206420
_d206420