000 06070cam a2200697Mi 4500
001 ocn828298714
003 OCoLC
005 20171107093659.0
006 m o d
007 cr cnu---unuuu
008 130223s2013 enkae ob 000 0 eng d
020 _a9781118601372
_q(electronic bk.)
020 _a1118601378
_q(electronic bk.)
020 _a9781118601457
_q(electronic bk.)
020 _a1118601459
_q(electronic bk.)
020 _z9781848212527
029 1 _aAU@
_b000050718536
029 1 _aCHBIS
_b009914541
029 1 _aCHVBK
_b175204519
029 1 _aDEBSZ
_b431339368
029 1 _aDKDLA
_b820120-katalog:000696488
029 1 _aNZ1
_b15916492
029 1 _aDEBBG
_bBV043395462
035 _a(OCoLC)828298714
040 _aEBLCP
_beng
_epn
_cEBLCP
_dN$T
_dYDXCP
_dDG1
_dUMR
_dE7B
_dIDEBK
_dOCLCF
_dOCLCQ
_dOCLCO
_dDEBSZ
_dOCLCQ
_dCOO
_dOCLCQ
_dDEBBG
049 _aMAIN
050 4 _aQ339.25 .L54 2012
072 7 _aMAT
_x016000
_2bisacsh
072 7 _aMAT
_x018000
_2bisacsh
082 0 4 _a511.3
100 1 _aLigozat, Gérard.
245 1 0 _aQualitative Spatial and Temporal Reasoning /
_h[electronic resource]
260 _aLondon, UK :
_bISTE ;
_aHoboken, N.J. :
_bWiley,
_c2012.
300 _a1 online resource (xxxi, 505 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references.
505 0 _aCover; Qualitative Spatial and Temporal Reasoning; Title Page; Copyright Page; Table of Contents; Introduction. Qualitative Reasoning; Chapter 1. Allen's Calculus; 1.1. Introduction; 1.1.1. "The mystery of the dark room"; 1.1.2. Contributions of Allen's formalism; 1.2. Allen's interval relations; 1.2.1. Basic relations; 1.2.2. Disjunctive relations; 1.3. Constraint networks; 1.3.1. Definition; 1.3.2. Expressiveness; 1.3.3. Consistency; 1.4. Constraint propagation; 1.4.1. Operations: inversion and composition; 1.4.2. Composition table; 1.4.3. Allen's algebra; 1.4.4. Algebraic closure.
505 8 _a1.4.5. Enforcing algebraic closure 1.5. Consistency tests; 1.5.1. The case of atomic networks; 1.5.2. Arbitrary networks; 1.5.3. Determining polynomial subsets; Chapter 2. Polynomial Subclasses of Allen's Algebra; 2.1. "Show me a tractable relation!"; 2.2. Subclasses of Allen's algebra; 2.2.1. A geometrical representation of Allen's relations; 2.2.2. Interpretation in terms of granularity; 2.2.3. Convex and pre-convex relations; 2.2.4. The lattice of Allen's basic relations; 2.2.5. Tractability of convex relations; 2.2.6. Pre-convex relations; 2.2.7. Polynomiality of pre-convex relations.
505 8 _a2.2.8. ORD-Horn relations 2.3. Maximal tractable subclasses of Allen's algebra; 2.3.1. An alternative characterization of pre-convex relations; 2.3.2. The other maximal polynomial subclasses; 2.4. Using polynomial subclasses; 2.4.1. Ladkin and Reinefeld's algorithm; 2.4.2. Empirical study of the consistency problem; 2.5. Models of Allen's language; 2.5.1. Representations of Allen's algebra; 2.5.2. Representations of the time-point algebra; 2.5.3. [aleph-null] categoricity of Allen's algebra; 2.6. Historical note; Chapter 3. Generalized Intervals; 3.1. "When they built the bridge."
505 8 _a3.1.1. Towards generalized intervals 3.2. Entities and relations; 3.3. The lattice of basic (p, q)-relations; 3.4. Regions associated with basic (p, q)-relations; 3.4.1. Associated polytopes; 3.4.2. M-convexity of the basic relations; 3.5. Inversion and composition; 3.5.1. Inversion; 3.5.2. Composition; 3.5.3. The algebras of generalized intervals; 3.6. Subclasses of relations: convex and pre-convex relations; 3.6.1. (p, q)-relations; 3.6.2. Convex relations; 3.6.3. Pre-convex relations; 3.7. Constraint networks; 3.8. Tractability of strongly pre-convex relations; 3.8.1. ORD-Horn relations.
505 8 _a3.9. Conclusions 3.10. Historical note; Chapter 4. Binary Qualitative Formalisms; 4.1. "Night driving"; 4.1.1. Parameters; 4.1.2. A panorama of the presented formalisms; 4.2. Directed points in dimension 1; 4.2.1. Operations; 4.2.2. Constraint networks; 4.2.3. Networks reducible to point networks; 4.2.4. Arbitrary directed point networks; 4.3. Directed intervals; 4.3.1. Operations; 4.3.2. Constraint networks and complexity; 4.4. The OPRA direction calculi; 4.5. Dipole calculi; 4.6. The Cardinal direction calculus; 4.6.1. Convex and pre-convex relations; 4.6.2. Complexity; 4.7. The Rectangle calculus.
520 _aStarting with an updated description of Allen's calculus, the book proceeds with a description of the main qualitative calculi which have been developed over the last two decades. It describes the connection of complexity issues to geometric properties. Models of the formalisms are described using the algebraic notion of weak representations of the associated algebras. The book also includes a presentation of fuzzy extensions of qualitative calculi, and a description of the study of complexity in terms of clones of operations.
588 0 _aPrint version record.
650 0 _aQualitative reasoning.
650 0 _aSpatial analysis (Statistics)
650 0 _aSpace and time
_xMathematical models.
650 0 _aLogic, Symbolic and mathematical.
650 4 _aSpace and time
_xMathematical models.
650 7 _aMATHEMATICS
_xInfinity.
_2bisacsh
650 7 _aMATHEMATICS
_xLogic.
_2bisacsh
650 7 _aLogic, Symbolic and mathematical.
_2fast
_0(OCoLC)fst01002068
650 7 _aQualitative reasoning.
_2fast
_0(OCoLC)fst01084939
650 7 _aSpace and time
_xMathematical models.
_2fast
_0(OCoLC)fst01127627
650 7 _aSpatial analysis (Statistics)
_2fast
_0(OCoLC)fst01128784
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aLigozat, Gérard.
_tQualitative spatial and temporal reasoning.
_dLondon, UK : ISTE ; Hoboken, N.J. : Wiley, 2012
_z9781848212527
_w(DLC) 2011029658
_w(OCoLC)699765430
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118601457
_zWiley Online Library
942 _2ddc
_cBK
999 _c206470
_d206470