000 05946cam a2200721Ma 4500
001 ocn841168733
003 OCoLC
005 20171107081537.0
006 m o d
007 cr cn|||||||||
008 130322s2013 gw a ob 001 0 eng d
020 _a9783527671397
_q(electronic bk.)
020 _a3527671390
_q(electronic bk.)
020 _a9783527670574
_q(e-book)
020 _a3527670572
_q(e-book)
020 _a9781299313583
_q(MyiLibrary)
020 _a1299313582
_q(MyiLibrary)
020 _a3527410929
_q(Cloth)
020 _a9783527410927
_q(Cloth)
020 _z9783527410873
_q(softcover)
020 _z9783527410927
029 1 _aAU@
_b000051628877
029 1 _aCHBIS
_b010441944
029 1 _aCHVBK
_b334086701
029 1 _aDEBBG
_bBV041829516
029 1 _aDEBBG
_bBV041911269
029 1 _aDEBSZ
_b431356211
029 1 _aDEBSZ
_b449349497
029 1 _aDKDLA
_b820120-katalog:000654312
029 1 _aNLGGC
_b372651690
029 1 _aNZ1
_b15346604
035 _a(OCoLC)841168733
_z(OCoLC)830161752
_z(OCoLC)841648853
_z(OCoLC)842854549
_z(OCoLC)961673235
_z(OCoLC)962595426
037 _a462608
_bMIL
040 _aE7B
_beng
_epn
_cE7B
_dOCLCQ
_dCUS
_dOCLCO
_dYDXCP
_dDG1
_dOCLCF
_dOCLCQ
_dEBLCP
_dMHW
_dN$T
_dCOO
_dIDEBK
_dDEBSZ
_dCDX
_dOCL
_dOCLCQ
_dOCL
_dOCLCQ
_dDG1
049 _aMAIN
050 4 _aQC174.86.N65
_bR67 2013eb
072 7 _aSCI
_x055000
_2bisacsh
072 7 _aSCI
_2eflch
082 0 4 _a530.13
_223
100 1 _aRöpke, Gerd.
245 1 0 _aNonequilibrium statistical physics /
_cGerd Röpke.
_h[electronic resource]
260 _aWeinheim :
_bWiley-VCH,
_c2013.
300 _a1 online resource (xiii, 382 pages) :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aPhysics textbook
504 _aIncludes bibliographical references and index.
505 0 _aNonequilibrium Statistical Physics; Contents; Preface; 1 Introduction; 1.1 Irreversibility: The Arrow of Time; 1.1.1 Dynamical Systems; 1.1.2 Thermodynamics; 1.1.3 Ensembles and Probability Distribution; 1.1.4 Entropy in Equilibrium Systems; 1.1.5 Fundamental Time Arrows, Units; 1.1.6 Example: Ideal Quantum Gases; 1.2 Thermodynamics of Irreversible Processes; 1.2.1 Quasiequilibrium; 1.2.2 Statistical Thermodynamics with Relevant Observables; 1.2.3 Phenomenological Description of Irreversible Processes; 1.2.4 Example: Reaction Rates.
505 8 _a1.2.5 Principle of Weakening of Initial Correlations and the Method of Nonequilibrium Statistical OperatorExercises; 2 Stochastic Processes; 2.1 Stochastic Processes with Discrete Event Times; 2.1.1 Potentiality and Options, Chance and Probabilities; 2.1.2 Stochastic Processes; 2.1.3 Reduced Probabilities; 2.1.4 Properties of Probability Distributions: Examples; 2.1.5 Example: One-Step Process on a Discrete Space-Time Lattice and Random Walk; 2.2 Birth-and-Death Processes and Master Equation; 2.2.1 Continuous Time Limit and Master Equation; 2.2.2 Example: Radioactive Decay.
505 8 _a2.2.3 Spectral Density and Autocorrelation Functions2.2.4 Example: Continuum Limit of Random Walk and Wiener Process; 2.2.5 Further Examples for Stochastic One-Step Processes; 2.2.6 Advanced Example: Telegraph Equation and Poisson Process; 2.3 Brownian Motion and Langevin Equation; 2.3.1 Langevin Equation; 2.3.2 Solution of the Langevin Equation by Fourier Transformation; 2.3.3 Example Calculations for a Langevin Process on Discrete Time; 2.3.4 Fokker-Planck Equation; 2.3.5 Application to Brownian Motion; 2.3.6 Important Continuous Markov Processes.
505 8 _a2.3.7 Stochastic Differential Equations and White Noise2.3.8 Applications of Continuous Stochastic Processes; Exercises; 3 Quantum Master Equation; 3.1 Derivation of the Quantum Master Equation; 3.1.1 Open Systems Interacting with a Bath; 3.1.2 Derivation of the Quantum Master Equation; 3.1.3 Born-Markov and Rotating Wave Approximations; 3.1.4 Example: Harmonic Oscillator in a Bath; 3.1.5 Example: Atom Coupled to the Electromagnetic Field; 3.2 Properties of the Quantum Master Equation and Examples; 3.2.1 Pauli Equation; 3.2.2 Properties of the Pauli Equation, Examples.
505 8 _a3.2.3 Discussion of the Pauli Equation3.2.4 Example: Linear Coupling to the Bath; 3.2.5 Quantum Fokker-Planck Equation; 3.2.6 Quantum Brownian Motion and the Classical Limit; Exercises; 4 Kinetic Theory; 4.1 The Boltzmann Equation; 4.1.1 Distribution Function; 4.1.2 Classical Reduced Distribution Functions; 4.1.3 Quantum Statistical Reduced Distribution Functions; 4.1.4 The Stoßzahlansatz; 4.1.5 Derivation of the Boltzmann Equation from the Nonequilibrium Statistical Operator; 4.1.6 Properties of the Boltzmann Equation; 4.1.7 Example: Hard Spheres; 4.1.8 Beyond the Boltzmann Kinetic Equation.
520 _aAuthored by one of the top theoretical physicists in Germany, and a well-known authority in the field, this is the only coherent presentation of the subject suitable for masters and PhD students, as well as postdocs in physics and related disciplines. Starting from a general discussion of the nonequilibrium state, different standard approaches such as master equations, and kinetic and linear response theory, are derived after special assumptions. This allows for an insight into the problems of nonequilibrium physics, a discussion of the limits, and suggestions for improvements. Applications.
650 0 _aNonequilibrium statistical mechanics.
650 7 _aSCIENCE
_xPhysics
_xGeneral.
_2bisacsh
650 7 _aNonequilibrium statistical mechanics.
_2fast
_0(OCoLC)fst01038620
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aRöpke, Gerd.
_tNonequilibrium Statistical Physics.
_dWeinheim : Wiley, ©2013
_z9783527410927
830 0 _aPhysics textbook.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9783527671397
_zWiley Online Library
942 _2ddc
_cBK
999 _c206664
_d206664