000 | 05946cam a2200721Ma 4500 | ||
---|---|---|---|
001 | ocn841168733 | ||
003 | OCoLC | ||
005 | 20171107081537.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 130322s2013 gw a ob 001 0 eng d | ||
020 |
_a9783527671397 _q(electronic bk.) |
||
020 |
_a3527671390 _q(electronic bk.) |
||
020 |
_a9783527670574 _q(e-book) |
||
020 |
_a3527670572 _q(e-book) |
||
020 |
_a9781299313583 _q(MyiLibrary) |
||
020 |
_a1299313582 _q(MyiLibrary) |
||
020 |
_a3527410929 _q(Cloth) |
||
020 |
_a9783527410927 _q(Cloth) |
||
020 |
_z9783527410873 _q(softcover) |
||
020 | _z9783527410927 | ||
029 | 1 |
_aAU@ _b000051628877 |
|
029 | 1 |
_aCHBIS _b010441944 |
|
029 | 1 |
_aCHVBK _b334086701 |
|
029 | 1 |
_aDEBBG _bBV041829516 |
|
029 | 1 |
_aDEBBG _bBV041911269 |
|
029 | 1 |
_aDEBSZ _b431356211 |
|
029 | 1 |
_aDEBSZ _b449349497 |
|
029 | 1 |
_aDKDLA _b820120-katalog:000654312 |
|
029 | 1 |
_aNLGGC _b372651690 |
|
029 | 1 |
_aNZ1 _b15346604 |
|
035 |
_a(OCoLC)841168733 _z(OCoLC)830161752 _z(OCoLC)841648853 _z(OCoLC)842854549 _z(OCoLC)961673235 _z(OCoLC)962595426 |
||
037 |
_a462608 _bMIL |
||
040 |
_aE7B _beng _epn _cE7B _dOCLCQ _dCUS _dOCLCO _dYDXCP _dDG1 _dOCLCF _dOCLCQ _dEBLCP _dMHW _dN$T _dCOO _dIDEBK _dDEBSZ _dCDX _dOCL _dOCLCQ _dOCL _dOCLCQ _dDG1 |
||
049 | _aMAIN | ||
050 | 4 |
_aQC174.86.N65 _bR67 2013eb |
|
072 | 7 |
_aSCI _x055000 _2bisacsh |
|
072 | 7 |
_aSCI _2eflch |
|
082 | 0 | 4 |
_a530.13 _223 |
100 | 1 | _aRöpke, Gerd. | |
245 | 1 | 0 |
_aNonequilibrium statistical physics / _cGerd Röpke. _h[electronic resource] |
260 |
_aWeinheim : _bWiley-VCH, _c2013. |
||
300 |
_a1 online resource (xiii, 382 pages) : _billustrations. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aPhysics textbook | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aNonequilibrium Statistical Physics; Contents; Preface; 1 Introduction; 1.1 Irreversibility: The Arrow of Time; 1.1.1 Dynamical Systems; 1.1.2 Thermodynamics; 1.1.3 Ensembles and Probability Distribution; 1.1.4 Entropy in Equilibrium Systems; 1.1.5 Fundamental Time Arrows, Units; 1.1.6 Example: Ideal Quantum Gases; 1.2 Thermodynamics of Irreversible Processes; 1.2.1 Quasiequilibrium; 1.2.2 Statistical Thermodynamics with Relevant Observables; 1.2.3 Phenomenological Description of Irreversible Processes; 1.2.4 Example: Reaction Rates. | |
505 | 8 | _a1.2.5 Principle of Weakening of Initial Correlations and the Method of Nonequilibrium Statistical OperatorExercises; 2 Stochastic Processes; 2.1 Stochastic Processes with Discrete Event Times; 2.1.1 Potentiality and Options, Chance and Probabilities; 2.1.2 Stochastic Processes; 2.1.3 Reduced Probabilities; 2.1.4 Properties of Probability Distributions: Examples; 2.1.5 Example: One-Step Process on a Discrete Space-Time Lattice and Random Walk; 2.2 Birth-and-Death Processes and Master Equation; 2.2.1 Continuous Time Limit and Master Equation; 2.2.2 Example: Radioactive Decay. | |
505 | 8 | _a2.2.3 Spectral Density and Autocorrelation Functions2.2.4 Example: Continuum Limit of Random Walk and Wiener Process; 2.2.5 Further Examples for Stochastic One-Step Processes; 2.2.6 Advanced Example: Telegraph Equation and Poisson Process; 2.3 Brownian Motion and Langevin Equation; 2.3.1 Langevin Equation; 2.3.2 Solution of the Langevin Equation by Fourier Transformation; 2.3.3 Example Calculations for a Langevin Process on Discrete Time; 2.3.4 Fokker-Planck Equation; 2.3.5 Application to Brownian Motion; 2.3.6 Important Continuous Markov Processes. | |
505 | 8 | _a2.3.7 Stochastic Differential Equations and White Noise2.3.8 Applications of Continuous Stochastic Processes; Exercises; 3 Quantum Master Equation; 3.1 Derivation of the Quantum Master Equation; 3.1.1 Open Systems Interacting with a Bath; 3.1.2 Derivation of the Quantum Master Equation; 3.1.3 Born-Markov and Rotating Wave Approximations; 3.1.4 Example: Harmonic Oscillator in a Bath; 3.1.5 Example: Atom Coupled to the Electromagnetic Field; 3.2 Properties of the Quantum Master Equation and Examples; 3.2.1 Pauli Equation; 3.2.2 Properties of the Pauli Equation, Examples. | |
505 | 8 | _a3.2.3 Discussion of the Pauli Equation3.2.4 Example: Linear Coupling to the Bath; 3.2.5 Quantum Fokker-Planck Equation; 3.2.6 Quantum Brownian Motion and the Classical Limit; Exercises; 4 Kinetic Theory; 4.1 The Boltzmann Equation; 4.1.1 Distribution Function; 4.1.2 Classical Reduced Distribution Functions; 4.1.3 Quantum Statistical Reduced Distribution Functions; 4.1.4 The Stoßzahlansatz; 4.1.5 Derivation of the Boltzmann Equation from the Nonequilibrium Statistical Operator; 4.1.6 Properties of the Boltzmann Equation; 4.1.7 Example: Hard Spheres; 4.1.8 Beyond the Boltzmann Kinetic Equation. | |
520 | _aAuthored by one of the top theoretical physicists in Germany, and a well-known authority in the field, this is the only coherent presentation of the subject suitable for masters and PhD students, as well as postdocs in physics and related disciplines. Starting from a general discussion of the nonequilibrium state, different standard approaches such as master equations, and kinetic and linear response theory, are derived after special assumptions. This allows for an insight into the problems of nonequilibrium physics, a discussion of the limits, and suggestions for improvements. Applications. | ||
650 | 0 | _aNonequilibrium statistical mechanics. | |
650 | 7 |
_aSCIENCE _xPhysics _xGeneral. _2bisacsh |
|
650 | 7 |
_aNonequilibrium statistical mechanics. _2fast _0(OCoLC)fst01038620 |
|
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aRöpke, Gerd. _tNonequilibrium Statistical Physics. _dWeinheim : Wiley, ©2013 _z9783527410927 |
830 | 0 | _aPhysics textbook. | |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9783527671397 _zWiley Online Library |
942 |
_2ddc _cBK |
||
999 |
_c206664 _d206664 |