000 06390cam a2200769 i 4500
001 ocn842307627
003 OCoLC
005 20171106121241.0
006 m o d
007 cr |||||||||||
008 130501s2013 nju ob 001 0 eng
010 _a 2013017916
016 7 _a016453808
_2Uk
020 _a9781119137207
_q(electronic bk.)
020 _a1119137209
_q(electronic bk.)
020 _a111863215X
_q(hardback)
020 _a9781118632154
_q(hardback)
020 _z9781118632369
020 _z1118632362
020 _z9781118632345
020 _z1118632346
020 _z9781118632376
020 _z1118632370
020 _z9781118632154
_q(hardback)
028 0 1 _aEB00064002
_bRecorded Books
029 1 _aCHBIS
_b009975954
029 1 _aCHVBK
_b305036599
029 1 _aDEBBG
_bBV041908994
029 1 _aDEBSZ
_b431471770
029 1 _aDKDLA
_b820120-katalog:000717799
029 1 _aDEBBG
_bBV043737942
029 1 _aAU@
_b000059221538
035 _a(OCoLC)842307627
_z(OCoLC)857059665
_z(OCoLC)864916363
_z(OCoLC)960203218
_z(OCoLC)961604000
_z(OCoLC)962577837
040 _aDLC
_beng
_erda
_epn
_cDLC
_dYDX
_dEBLCP
_dN$T
_dIDEBK
_dOCLCF
_dYDXCP
_dE7B
_dUKMGB
_dRECBK
_dHEBIS
_dDEBSZ
_dOCLCO
_dDEBBG
_dDG1
_dOCLCO
_dCOO
_dOCLCO
_dOCLCQ
_dOCLCO
_dLOA
042 _apcc
049 _aMAIN
050 0 0 _aTA355
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
082 0 0 _a620.301/51
_223
100 1 _aWu, Jong-Shyong.
245 1 0 _aAnalytical and numerical methods for vibration analyses /
_cJong-Shyong Wu.
_h[electronic resource]
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons Inc.,
_c2013.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aTitle Page; Copyright; About the Author; Preface; Chapter 1: Introduction to Structural Vibrations; 1.1 Terminology; 1.2 Types of Vibration; 1.3 Objectives of Vibration Analyses; 1.4 Global and Local Vibrations; 1.5 Theoretical Approaches to Structural Vibrations; References; Chapter 2: Analytical Solutions for Uniform Continuous Systems; 2.1 Methods for Obtaining Equations of Motion of a Vibrating System; 2.2 Vibration of a Stretched String; 2.3 Longitudinal Vibration of a Continuous Rod; 2.4 Torsional Vibration of a Continuous Shaft
505 8 _a2.5 Flexural Vibration of a Continuous Euler-Bernoulli Beam2.6 Vibration of Axial-Loaded Uniform Euler-Bernoulli Beam; 2.7 Vibration of an Euler-Bernoulli Beam on the Elastic Foundation; 2.8 Vibration of an Axial-Loaded Euler Beam on the Elastic Foundation; 2.9 Flexural Vibration of a Continuous Timoshenko Beam; 2.10 Vibrations of a Shear Beam and a Rotary Beam; 2.11 Vibration of an Axial-Loaded Timoshenko Beam; 2.12 Vibration of a Timoshenko Beam on the Elastic Foundation; 2.13 Vibration of an Axial-Loaded Timoshenko Beam on the Elastic Foundation; 2.14 Vibration of Membranes
505 8 _a2.15 Vibration of Flat PlatesReferences; Chapter 3: Analytical Solutions for Non-Uniform Continuous Systems: Tapered Beams; 3.1 Longitudinal Vibration of a Conical Rod; 3.2 Torsional Vibration of a Conical Shaft; 3.3 Displacement Function for Free Bending Vibration of a Tapered Beam; 3.4 Bending Vibration of a Single-Tapered Beam; 3.5 Bending Vibration of a Double-Tapered Beam; 3.6 Bending Vibration of a Nonlinearly Tapered Beam; References; Chapter 4: Transfer Matrix Methods for Discrete and Continuous Systems; 4.1 Torsional Vibrations of Multi-Degrees-of-Freedom Systems
505 8 _a4.2 Lumped-Mass Model Transfer Matrix Method for Flexural Vibrations4.3 Continuous-Mass Model Transfer Matrix Method for Flexural Vibrations; 4.4 Flexural Vibrations of Beams with In-Span Rigid (Pinned) Supports; References; Chapter 5: Eigenproblem and Jacobi Method; 5.1 Eigenproblem; 5.2 Natural Frequencies, Natural Mode Shapes and Unit-Amplitude Mode Shapes; 5.3 Determination of Normal Mode Shapes; 5.4 Solution of Standard Eigenproblem with Standard Jacobi Method; 5.5 Solution of Generalized Eigenproblem with Generalized Jacobi Method
505 8 _a5.6 Solution of Semi-Definite System with Generalized Jacobi Method5.7 Solution of Damped Eigenproblem; References; Chapter 6: Vibration Analysis by Finite Element Method; 6.1 Equation of Motion and Property Matrices; 6.2 Longitudinal (Axial) Vibration of a Rod; 6.4 Flexural Vibration of an Euler-Bernoulli Beam; 6.5 Shape Functions for a Three-Dimensional Timoshenko Beam Element; 6.6 Property Matrices of a Three-Dimensional Timoshenko Beam Element; 6.7 Transformation Matrix for a Two-Dimensional Beam Element; 6.8 Transformations of Element Stiffness Matrix and Mass Matrix
520 _a"This book illustrates theories and associated mathematical expressions with numerical examples using various methods, leading to exact solutions, more accurate results, and more computationally efficient techniques. It presents the derivations of the equations of motion for all structure foundations using either the continuous model or the discrete model. It discusses applications for students taking courses including vibration mechanics, dynamics of structures, and finite element analyses of structures, the transfer matrix method, and Jacobi method"--
_cProvided by publisher.
520 _a"A book to introduce the theories or methods presented in some of the author's publications appearing in the international journals"--
_cProvided by publisher.
588 0 _aPrint version record and CIP data provided by publisher.
650 0 _aVibration
_xMathematical models.
650 0 _aStructural analysis (Engineering)
_xMathematical models.
650 7 _aTECHNOLOGY & ENGINEERING
_xEngineering (General)
_2bisacsh
650 7 _aTECHNOLOGY & ENGINEERING
_xReference.
_2bisacsh
650 7 _aStructural analysis (Engineering)
_xMathematical models.
_2fast
_0(OCoLC)fst01135610
650 7 _aVibration
_xMathematical models.
_2fast
_0(OCoLC)fst01166172
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aWu, Jong-Shyong.
_tAnalytical and numerical methods for vibration analyses.
_dHoboken, NJ : John Wiley & Sons Inc., 2013
_z9781118632154
_w(DLC) 2013008893
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781119137207
_zWiley Online Library
942 _2ddc
_cBK
999 _c206700
_d206700