000 06449cam a2200697Ia 4500
001 ocn842929854
003 OCoLC
005 20171106121925.0
006 m o d
007 cr cnu---unuuu
008 130514s2013 nju ob 001 0 eng d
020 _a9781118614563
_q(electronic bk.)
020 _a9781118614631
_q(electronic bk.)
020 _a1118614631
_q(electronic bk.)
020 _a1118614569
_q(electronic bk.)
020 _a9781118614624
_q(electronic bk.)
020 _a1118614623
_q(electronic bk.)
020 _z9781118077504
020 _z1118077504
029 1 _aAU@
_b000051629167
029 1 _aCHBIS
_b010026636
029 1 _aCHVBK
_b306244721
029 1 _aDEBBG
_bBV043395832
029 1 _aNLGGC
_b357446860
029 1 _aNZ1
_b15341718
035 _a(OCoLC)842929854
037 _a95B81131-DBB8-4D80-96B1-7BA699235210
_bOverDrive, Inc.
_nhttp://www.overdrive.com
040 _aN$T
_beng
_epn
_cN$T
_dDG1
_dYDXCP
_dE7B
_dCUI
_dOCLCA
_dC6I
_dIEEEE
_dOCLCF
_dLRU
_dCOO
_dOCLCQ
_dTEFOD
_dDEBBG
_dOCLCQ
_dEBLCP
049 _aMAIN
050 4 _aQA297
_b.T456 2013eb
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
082 0 4 _a620.001/518
_223
100 1 _aTeodorescu, P. P.
245 1 0 _aNumerical analysis with applications in mechanics and engineering /
_cPetre Teodorescu, Nicolae-Doru Stanescu, Nicolae Pandrea.
_h[electronic resource]
260 _aHoboken, New Jersey :
_bJohn Wiley & Sons Inc.,
_c©2013.
300 _a1 online resource (xi, 633 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aSeries; Title Page; Copyright; Preface; Chapter 1: Errors in Numerical Analysis; 1.1 Enter Data Errors; 1.2 Approximation Errors; 1.3 Round-Off Errors; 1.4 Propagation of Errors; 1.5 Applications; Further Reading; Chapter 2: Solution of Equations; 2.1 The Bipartition (Bisection) Method; 2.2 The Chord (Secant) Method; 2.3 The Tangent Method (Newton); 2.4 The Contraction Method; 2.5 The Newton-Kantorovich Method; 2.6 Numerical Examples; 2.7 Applications; Further Reading; Chapter 3: Solution of Algebraic Equations; 3.1 Determination of Limits of the Roots of Polynomials; 3.2 Separation of Roots
505 8 _a3.3 Lagrange'S Method3.4 The Lobachevski-Graeffe Method; 3.5 The Bernoulli Method; 3.6 The Bierge-Viète Method; 3.7 Lin Methods; 3.8 Numerical Examples; 3.9 Applications; Further Reading; Chapter 4: Linear Algebra; 4.1 Calculation of Determinants; 4.2 Calculation of the Rank; 4.3 Norm of a Matrix; 4.4 Inversion of Matrices; 4.5 Solution of Linear Algebraic Systems of Equations; 4.6 Determination of Eigenvalues and Eigenvectors; 4.7 QR Decomposition; 4.8 The Singular Value Decomposition (SVD); 4.9 Use of the Least Squares Method in Solving the Linear Overdetermined Systems
505 8 _a4.10 The Pseudo-Inverse of a Matrix4.11 Solving of the Underdetermined Linear Systems; 4.12 Numerical Examples; 4.13 Applications; Further Reading; Chapter 5: Solution of Systems of Nonlinear Equations; 5.1 The Iteration Method (Jacobi); 5.2 Newton's Method; 5.3 The Modified Newton Method; 5.4 The Newton-Raphson Method; 5.5 The Gradient Method; 5.6 The Method of Entire Series; 5.7 Numerical Example; 5.8 Applications; Further Reading; Chapter 6: Interpolation and Approximation of Functions; 6.1 Lagrange's Interpolation Polynomial; 6.2 Taylor Polynomials
505 8 _a6.3 Finite Differences: Generalized Power6.4 Newton's Interpolation Polynomials; 6.5 Central Differences: Gauss's Formulae, Stirling's Formula, Bessel's Formula, Everett's Formulae; 6.6 Divided Differences; 6.7 Newton-Type Formula with Divided Differences; 6.8 Inverse Interpolation; 6.9 Determination of the Roots of an Equation by Inverse Interpolation; 6.10 Interpolation by Spline Functions; 6.11 Hermite's Interpolation; 6.12 Chebyshev's Polynomials; 6.13 Mini-Max Approximation of Functions; 6.14 Almost Mini-Max Approximation of Functions
505 8 _a6.15 Approximation of Functions by Trigonometric Functions (Fourier)6.16 Approximation of Functions by the Least Squares; 6.17 Other Methods of Interpolation; 6.18 Numerical Examples; 6.19 Applications; Further Reading; Chapter 7: Numerical Differentiationand Integration; 7.1 Introduction; 7.2 Numerical Differentiation by Means of an Expansion into a Taylor Series; 7.3 Numerical Differentiation by Means of Interpolation Polynomials; 7.4 Introduction to Numerical Integration; 7.5 The Newton-Côtes Quadrature Formulae; 7.6 The Trapezoid Formula; 7.7 Simpson's Formula
520 _a"Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret results. Each chapter is devoted to a unique analytical methodology, including a detailed theoretical presentation and emphasis on practical computation. Ample numerical examples and applications round out the discussion, illustrating how to work out specific problems of mechanics, physics, or engineering. Readers will learn the core purpose of each technique, develop hands-on problem-solving skills, and get a complete picture of the studied phenomenon."--Publisher's website.
588 0 _aPrint version record.
650 0 _aNumerical analysis.
650 0 _aEngineering mathematics.
650 7 _aTECHNOLOGY & ENGINEERING
_xEngineering (General)
_2bisacsh
650 7 _aTECHNOLOGY & ENGINEERING
_xReference.
_2bisacsh
650 7 _aEngineering mathematics.
_2fast
_0(OCoLC)fst00910601
650 7 _aNumerical analysis.
_2fast
_0(OCoLC)fst01041273
655 4 _aElectronic books.
700 1 _aStănescu, Nicolae-Doru.
700 1 _aPandrea, Nicolae.
776 0 8 _iPrint version:
_aTeodorescu, P.P.
_tNumerical Analysis with Applications in Mechanics and Engineering.
_dHoboken, New Jersey : John Wiley & Sons Inc., [2013]
_z9781118077504
_w(DLC) 2012043659
_w(OCoLC)798615065
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118614563
_zWiley Online Library
942 _2ddc
_cBK
999 _c206717
_d206717