000 04272cam a2200685Ia 4500
001 ocn871224295
003 OCoLC
005 20171031095653.0
006 m o d
007 cr cnu---unuuu
008 140301s2014 nju ob 001 0 eng d
020 _a9781118760932
_q(electronic bk.)
020 _a111876093X
_q(electronic bk.)
020 _a9781118760895
_q(electronic bk.)
020 _a1118760891
_q(electronic bk.)
020 _a9781118760949
_q(electronic bk.)
020 _a1118760948
_q(electronic bk.)
020 _z9781848214743
_q(hbk.)
020 _z184821474X
_q(hbk.)
029 1 _aCHBIS
_b010442005
029 1 _aCHVBK
_b334092795
029 1 _aDEBBG
_bBV043396571
029 1 _aDEBBG
_bBV043607762
029 1 _aDEBSZ
_b405661800
029 1 _aNZ1
_b15497408
029 1 _aNZ1
_b15906667
035 _a(OCoLC)871224295
_z(OCoLC)871318314
_z(OCoLC)876043676
040 _aEBLCP
_beng
_epn
_cEBLCP
_dOCLCQ
_dIDEBK
_dN$T
_dDG1
_dCUS
_dYDXCP
_dDEBSZ
_dOCLCA
_dOCLCQ
_dUA@
_dE7B
_dCOO
_dDEBBG
_dOCLCQ
049 _aMAIN
050 4 _aT174.7
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
082 0 4 _a620.5
_222
100 1 _aTing, Michael
_c(Software engineer)
245 1 0 _aMolecular Imaging in Nano MRI /
_cMichael Ting.
_h[electronic resource]
260 _aLondon, U.K. :
_bISTE ;
_aHoboken, N.J. :
_bWiley,
_c2014.
300 _a1 online resource (x, 77 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aFocus series
504 _aIncludes bibliographical references and index.
505 0 _aCover; Title page; Contents; Introduction; Chapter 1. Nano MRI; Chapter 2. Sparse Image Reconstruction; 2.1. Introduction; 2.2. Problem formulation; 2.3. Validity of the observation model in MRFM; 2.4. Literature review; 2.4.1. Sparse denoising; 2.4.2. Variable selection; 2.4.3. Compressed sensing; 2.5. Reconstruction performance criteria; Chapter 3. Iterative Thresholding Methods; 3.1. Introduction; 3.2. Separation of deconvolution and denoising; 3.2.1. Gaussian noise statistics; 3.2.2. Poisson noise statistics.
505 8 _a3.3. Choice of sparse denoising operator in the case of Gaussian noise statistics3.3.1. Comparison to the projected gradient method; 3.4. Hyperparameter selection; 3.5. MAP estimators using the LAZE image prior; 3.5.1. MAP1; 3.5.2. MAP2; 3.5.3. Comparison of MAP1 versus MAP2; 3.6. Simulation example; 3.7. Future directions; Chapter 4. Hyperparameter Selection Using the SURE Criterion; 4.1. Introduction; 4.2. SURE for the lasso estimator; 4.3. SURE for the hybrid estimator; 4.4. Computational considerations; 4.5. Comparison with other criteria; 4.6. Simulation example.
520 _aThe authors describe a technique that can visualize the atomic structure of molecules, it is necessary, in terms of the image processing, to consider the reconstruction of sparse images. Many works have leveraged the assumption of sparsity in order to achieve an improved performance that would not otherwise be possible. For nano MRI, the assumption of sparsity is given by default since, at the atomic scale, molecules aresparse structures. This work reviews the latest results on molecular imaging for nano MRI. Sparse image reconstruction methods can be categorized as either non-B.
588 0 _aOnline resource; title from PDF title page (Wiley, viewed April 4, 2014).
650 0 _aMagnetic resonance imaging
_xComputer programs.
650 0 _aNanoscience.
650 0 _aNuclear magnetic resonance
_xComputer programs.
650 4 _aMagnetic resonance imaging
_xComputer programs.
650 4 _aNanoscience.
650 4 _aNuclear magnetic resonance
_xComputer programs.
650 7 _aTECHNOLOGY & ENGINEERING
_xEngineering (General)
_2bisacsh
650 7 _aTECHNOLOGY & ENGINEERING
_xReference.
_2bisacsh
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aTing, Michael.
_tMolecular imaging in nano MRI.
_dLondon, U.K : ISTE ; Hoboken, N.J. : Wiley, 2014
_z9781848214743
_w(OCoLC)859185634
830 0 _aFocus nanoscience and nanotechnology series.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118760949
_zWiley Online Library
942 _2ddc
_cBK
999 _c207294
_d207294