000 06359cam a2200781 i 4500
001 ocn878668144
003 OCoLC
005 20171030133328.0
006 m o d
007 cr |||||||||||
008 140428s2014 si ob 001 0 eng
010 _a 2014016885
020 _a9781118567289
_q(ePub)
020 _a1118567285
_q(ePub)
020 _a9781118567227
_q(Adobe PDF)
020 _a1118567226
_q(Adobe PDF)
020 _a9781118567210
_q(electronic bk.)
020 _a1118567218
_q(electronic bk.)
020 _a111856720X
_q(cloth)
020 _a9781118567203
_q(cloth)
020 _a9781306979764
_q(MyiLibrary)
020 _a1306979765
_q(MyiLibrary)
020 _z9781118567203
_q(cloth)
029 1 _aCHBIS
_b010442047
029 1 _aCHVBK
_b334092353
029 1 _aDEBSZ
_b431727732
029 1 _aNZ1
_b15906880
029 1 _aDEBSZ
_b475027361
029 1 _aDEBBG
_bBV043396729
035 _a(OCoLC)878668144
_z(OCoLC)884646610
_z(OCoLC)889305901
_z(OCoLC)961577277
_z(OCoLC)962610705
040 _aDLC
_beng
_erda
_epn
_cDLC
_dYDX
_dYDXCP
_dDG1
_dIDEBK
_dN$T
_dCDX
_dCOO
_dRECBK
_dE7B
_dEBLCP
_dDEBSZ
_dOCLCQ
_dDEBBG
042 _apcc
049 _aMAIN
050 0 0 _aTA357.5.G47
072 7 _aSCI
_x041000
_2bisacsh
072 7 _aSCI
_x096000
_2bisacsh
082 0 0 _a531/.163
_223
100 1 _aMatuttis, Hans-Georg,
_eauthor.
245 1 0 _aUnderstanding the discrete element method : simulation of non-spherical particles for granular and multi-body systems /
_cHans-Georg Matuttis, the University of Electro-Communications, Japan, Jian Chen, Riken Advanced Institute for Computational Science, Japan.
_h[electronic resource]
264 1 _aSingapore :
_bWiley,
_c2014.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aUNDERSTANDING THE DISCRETE ELEMENT METHOD SIMULATION OF NON-SPHERICAL PARTICLES FOR GRANULARAND MULTI-BODY SYSTEMS; Copright; Contents; Exercises; About the Authors; Preface; Acknowledgements; List of Abbreviations; 1 Mechanics; 1.1 Degrees of freedom; 1.1.1 Particle mechanics and constraints; 1.1.2 From point particles to rigid bodies; 1.1.3 More context and terminology; 1.2 Dynamics of rectilinear degrees of freedom; 1.3 Dynamics of angular degrees of freedom; 1.3.1 Rotation in two dimensions; 1.3.2 Moment of inertia; 1.3.3 From two to three dimensions.
505 8 _a1.3.4 Rotation matrix in three dimensions1.3.5 Three-dimensional moments of inertia; 1.3.6 Space-fixed and body-fixed coordinate systems andequations of motion; 1.3.7 Problems with Euler angles; 1.3.8 Rotations represented using complex numbers; 1.3.9 Quaternions; 1.3.10 Derivation of quaternion dynamics; 1.4 The phase space; 1.4.1 Qualitative discussion of the time dependence of linear oscillations; 1.4.2 Resonance; 1.4.3 The flow in phase space; 1.5 Nonlinearities; 1.5.1 Harmonic balance; 1.5.2 Resonance in nonlinear systems; 1.5.3 Higher harmonics and frequency mixing.
505 8 _a1.5.4 The van der Pol oscillator1.6 From higher harmonics to chaos; 1.6.1 The bifurcation cascade; 1.6.2 The nonlinear frictional oscillator and Poincar ́e maps; 1.6.3 The route to chaos; 1.6.4 Boundary conditions and many-particle systems; 1.7 Stability and conservationlaws; 1.7.1 Stability in statics; 1.7.2 Stability in dynamics; 1.7.3 Stable axes of rotation around the principal axis; 1.7.4 Noether's theorem and conservation laws; 1.8 Further reading; Exercises; References; 2Numerical Integration of OrdinaryDifferential Equations; 2.1 Fundamentals of numerical analysis.
505 8 _a2.1.1 Floating point numbers2.1.2 Big-O notation; 2.1.3 Relative and absolute error; 2.1.4 Truncation error; 2.1.5 Local and global error; 2.1.6 Stability; 2.1.7 Stable integrators for unstable problems; 2.2 Numerical analysis for ordinary differential equations; 2.2.1 Variable notation and transformation of the order of adifferential equation; 2.2.2 Differences in the simulation of atoms and molecules, as compared to macroscopic particles; 2.2.3 Truncation error for solutions of ordinary differential equations; 2.2.4 Fundamental approaches; 2.2.5 Explicit Euler method.
505 8 _a2.2.6 Implicit Euler method2.3 Runge-Kutta methods; 2.3.1 Adaptive step-size control; 2.3.2 Dense output and event location; 2.3.3 Partitioned Runge-Kutta methods; 2.4 Symplectic methods; 2.4.1 The classical Verlet method; 2.4.2 Velocity-Verlet methods; 2.4.3 Higher-order velocity-Verlet methods; 2.4.4 Pseudo-symplectic methods; 2.4.5 Order, accuracy and energy conservation; 2.4.6 Backward error analysis; 2.4.7 Case study: the harmonic oscillator with andwithout viscous damping; 2.5 Stiff problems; 2.5.1 Evaluating computational costs; 2.5.2 Stiff solutions and error as noise.
520 _aGives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particlesProvides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulationHighlights the numerical tricks and pitfalls that are usually only realized after years o.
588 0 _aPrint version record and CIP data provided by publisher.
650 0 _aGranular flow.
650 0 _aDiscrete element method.
650 0 _aMultibody systems.
650 0 _aMechanics, Applied
_xComputer simulation.
650 4 _aDiscrete element method.
650 4 _aGranular flow.
650 4 _aMechanics, Applied
_xComputer simulation.
650 4 _aMultibody systems.
650 7 _aSCIENCE
_xMechanics
_xGeneral.
_2bisacsh
650 7 _aSCIENCE
_xMechanics
_xSolids.
_2bisacsh
655 4 _aElectronic books.
700 1 _aChen, J. F.
_q(Jian-Fei),
_d1963-
_eauthor.
776 0 8 _iPrint version:
_aMatuttis, Hans-Georg, author.
_tUnderstanding the discrete element method.
_dHoboken, NJ : John Wiley & Sons Inc., 2014
_z9781118567203
_w(DLC) 2014005447
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118567210
_zWiley Online Library
942 _2ddc
_cBK
999 _c207409
_d207409