000 | 05926cam a2200685Ii 4500 | ||
---|---|---|---|
001 | ocn889949229 | ||
003 | OCoLC | ||
005 | 20171026112114.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140904s2014 enka ob 000 0 eng d | ||
020 |
_a9781118984277 _q(electronic bk.) |
||
020 |
_a1118984277 _q(electronic bk.) |
||
020 |
_a9781118984291 _q(electronic bk.) |
||
020 |
_a1118984293 _q(electronic bk.) |
||
020 | _a1848216874 | ||
020 | _a9781848216877 | ||
020 | _z9781848216877 | ||
029 | 1 |
_aCHBIS _b010259752 |
|
029 | 1 |
_aCHVBK _b325941653 |
|
029 | 1 |
_aDEBSZ _b431746052 |
|
029 | 1 |
_aGBVCP _b81486693X |
|
029 | 1 |
_aNZ1 _b15908974 |
|
029 | 1 |
_aDEBBG _bBV043397097 |
|
035 |
_a(OCoLC)889949229 _z(OCoLC)887507338 _z(OCoLC)961660923 _z(OCoLC)962720855 |
||
040 |
_aDG1 _beng _erda _epn _cDG1 _dN$T _dYDXCP _dOHI _dEBLCP _dIDEBK _dCDX _dE7B _dVRC _dRECBK _dDEBSZ _dCOO _dOCLCQ _dDEBBG |
||
049 | _aMAIN | ||
050 | 4 |
_aTK7874.85 _b.W53 2014 |
|
072 | 7 |
_aTEC _x009070 _2bisacsh |
|
082 | 0 | 4 |
_a621.381045 _223 |
245 | 0 | 0 |
_aWide band gap semiconductor nanowires, 2 : Heterostructures and optoelectronic devices / _cedited by Vincent Consonni, Guy Feuillet. _h[electronic resource] |
246 | 3 | 0 | _aHeterostructures and optoelectronic devices |
264 | 1 |
_aLondon, UK : _bISTE, _c2014. |
|
300 |
_a1 online resource : _billustrations (black and white). |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aElectronics engineering series | |
504 | _aIncludes bibliographical references. | ||
505 | 0 | _aCover; Title Page; Copyright; Contents; Preface; Part 1: GaN and ZnO Nanowire Heterostructures; Chapter 1: AlGaN/GaN Nanowire Heterostructures ; 1.1. A model system for AlGaN/GaN heterostructures; 1.2. Axial AlGaN/GaN nanowire heterostructures; 1.2.1. Structural properties of axial AlGaN/GaN nanowire heterostructures; 1.2.2. Optical properties of axial AlGaN/GaN nanowire heterostructures; 1.2.3. Lateral internal electric fields; 1.2.4. Axial internal electric fields; 1.2.5. Optical characterization of single-AlGaN/GaN nanowires containing GaN nanodisks; 1.2.6. Electrical transport properties. | |
505 | 8 | _a1.3. AlGaN/GaN core-shell nanowire heterostructures1.3.1. Structural properties; 1.3.2. Optical characteristics; 1.3.3. Electronic properties; 1.3.4. True one-dimensional GaN quantum wire (QWR) second-order self-assembly; 1.4. Application examples; 1.4.1. AlGaN/GaN NWH optochemical gas sensors; 1.4.2. AlGaN/GaN nanowire heterostructure resonant tunneling diodes; 1.5. Conclusions; 1.6. Bibliography; Chapter 2: InGaN Nanowire Heterostructures; 2.1. Introduction; 2.2. Self-assembled InGaN nanowires; 2.3. X-ray characterization of InGaN nanowires. | |
505 | 8 | _a2.4. InGaN nanodisks and nanoislands in GaN nanowires2.5. Selective area growth (SAG) of InGaN nanowires; 2.6. Conclusion; 2.7. Bibliography; Chapter 3: ZnO-Based Nanowire Heterostructures; 3.1. Introduction; 3.2. Designing ZnO-based nanowire heterostructures; 3.3. Growth of ZnxMg1-xO/ZnO core-shell heterostructures by MOVPE; 3.4. Misfit relaxation processes in ZnxMg1-xO/ZnO core-shell structures; 3.5. Optical efficiency of core-shell oxide-based nanowire heterostructures; 3.6. Axial nanowire heterostructures; 3.7. Conclusions and perspectives; 3.8. Bibliography. | |
505 | 8 | _aChapter 4: ZnO and GaN Nanowire-based Type II Heterostructures4.1. Semiconductor heterostructures; 4.2. Type II heterostructures; 4.3. Optimal device architecture; 4.4. Electronic structure of type II core-shell nanowires; 4.5. Synthesis of the type II core-shell nanowires and their signatures; 4.6. Demonstration of type II effects in ZnO-ZnSe core-shell nanowires and photovoltaic devices; 4.7. Summary; 4.8. Acknowledgments; 4.9. Bibliography; Part 2: Integration of GaN and ZnO Nanowires in Optoelectronic Devices; Chapter 5: Axial GaN Nanowire-based LEDs; 5.1. Introduction. | |
505 | 8 | _a5.2. Top-down GaN-based axial nanowire LEDs5.2.1. Fabrication of top-down GaN-based axial nanowires; 5.2.2. Device fabrication of axial nanowire LEDs; 5.2.3. Performance characteristics of top-down axial nanowire LEDs; 5.3. Bottom-up GaN-based axial nanowire LEDs; 5.3.1. Growth techniques; 5.3.2. Doping, polarity and surface charge properties; 5.3.3. Design and typical performance of bottom-up axial nanowire LEDs; 5.3.3.1. Disk/well-in-a-wire LEDs; 5.3.3.2. Double heterostructure nanowire LEDs; 5.3.3.3. Dot-in-a-wire nanowire LEDs; 5.3.3.4. Polarization-induced p-n junction nanowire LEDs. | |
520 | _aThis book, the second of two volumes, describes heterostructures and optoelectronic devices made from GaN and ZnO nanowires. Over the last decade, the number of publications on GaN and ZnO nanowires has grown exponentially, in particular for their potential optical applications in LEDs, lasers, UV detectors or solar cells. So far, such applications are still in their infancy, which we analyze as being mostly due to a lack of understanding and control of the growth of nanowires and related heterostructures. Furthermore, dealing with two different but related semiconductors such as ZnO and. | ||
588 | 0 | _aPrint version record. | |
650 | 0 | _aOptoelectronic devices. | |
650 | 0 | _aNanowires. | |
650 | 7 |
_aTECHNOLOGY & ENGINEERING _xMechanical. _2bisacsh |
|
650 | 7 |
_aNanowires. _2fast _0(OCoLC)fst01032641 |
|
650 | 7 |
_aOptoelectronic devices. _2fast _0(OCoLC)fst01046908 |
|
655 | 4 | _aElectronic books. | |
655 | 0 | _aElectronic books. | |
700 | 1 |
_aConsonni, Vincent, _eeditor. |
|
700 | 1 |
_aFeuillet, Guy, _eeditor. |
|
776 | 0 | 8 |
_iPrint version: _tWide band gap semiconductor nanowires _z9781848215979 _w(OCoLC)870426617 |
830 | 0 | _aElectronics engineering series (London, England) | |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9781118984291 _zWiley Online Library |
942 |
_2ddc _cBK |
||
999 |
_c207651 _d207651 |