000 | 06753cam a2200721Ii 4500 | ||
---|---|---|---|
001 | ocn890798347 | ||
003 | OCoLC | ||
005 | 20171026111010.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140918s2014 enk ob 001 0 eng d | ||
020 |
_a9781119008217 _q(electronic bk.) |
||
020 |
_a1119008212 _q(electronic bk.) |
||
020 |
_a9781119008200 _q(electronic bk.) |
||
020 |
_a1119008204 _q(electronic bk.) |
||
020 |
_a9781119042853 _q(electronic bk.) |
||
020 |
_a1119042852 _q(electronic bk.) |
||
020 | _z9781848216150 | ||
029 | 1 |
_aAU@ _b000053548472 |
|
029 | 1 |
_aCHBIS _b010259827 |
|
029 | 1 |
_aCHBIS _b010346039 |
|
029 | 1 |
_aCHVBK _b325940320 |
|
029 | 1 |
_aCHVBK _b330765663 |
|
029 | 1 |
_aDEBSZ _b431774102 |
|
029 | 1 |
_aNZ1 _b15909348 |
|
029 | 1 |
_aGBVCP _b814874975 |
|
029 | 1 |
_aDEBBG _bBV043648147 |
|
035 |
_a(OCoLC)890798347 _z(OCoLC)890981770 _z(OCoLC)892984534 |
||
040 |
_aN$T _beng _erda _epn _cN$T _dDG1 _dYDXCP _dOH1 _dOCLCQ _dVRC _dCHVBK _dOCLCF _dS4S _dEBLCP _dRECBK _dDEBSZ _dOCLCQ _dDEBBG _dDG1 |
||
049 | _aMAIN | ||
050 | 4 | _aQA267 | |
072 | 7 |
_aCOM _x051010 _2bisacsh |
|
082 | 0 | 4 |
_a005.13/1 _223 |
100 | 1 | _aRigo, Michel. | |
245 | 1 | 0 |
_aFormal languages, automata and numeration systems, 1 : Introduction to combinatorics on words / _cMichel Rigo. _h[electronic resource] |
246 | 3 | 0 | _aIntroduction to combinatorics on words |
264 | 1 |
_aLondon : _bWiley, _c2014. |
|
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aNetworks and telecommunications series | |
500 | _aTitle from PDF title page (viewed on Sept. 18, 2014). | ||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | 0 |
_gVol. 1 _tIntroduction to combinatorics on words. |
505 | 0 | 0 |
_gVol. 2 _tApplications to recognizability and decidability. |
520 | 8 |
_aAnnotation _bFormal Languages, Automaton and Numeration Systems presents readers with a review of research related to formal language theory, combinatorics on words or numeration systems, such as Words, DLT (Developments in Language Theory), ICALP, MFCS (Mathematical Foundation of Computer Science), Mons Theoretical Computer Science Days, Numeration, CANT (Combinatorics, Automata and Number Theory).Combinatorics on words deals with problems that can be stated in a non-commutative monoid, such as subword complexity of finite or infinite words, construction and properties of infinite words, unavoidable regularities or patterns. When considering some numeration systems, any integer can be represented as a finite word over an alphabet of digits. This simple observation leads to the study of the relationship between the arithmetical properties of the integers and the syntactical properties of the corresponding representations. One of the most profound results in this direction is given by the celebrated theorem by Cobham. Surprisingly, a recent extension of this result to complex numbers led to the famous Four Exponentials Conjecture. This is just one example of the fruitful relationship between formal language theory (including the theory of automata) and number theory. Contents to include: - algebraic structures, homomorphisms, relations, free monoid - finite words, prefixes, suffixes, factors, palindromes- periodicity and Fine-Wilf theorem- infinite words are sequences over a finite alphabet- properties of an ultrametric distance, example of the p-adic norm- topology of the set of infinite words- converging sequences of infinite and finite words, compactness argument- iterated morphism, coding, substitutive or morphic words- the typical example of the Thue-Morse word- the Fibonacci word, the Mex operator, the n-bonacci words- wordscomingfromnumbertheory(baseexpansions, continuedfractions ...) - the taxonomy of Lindenmayer systems- S-adic sequences, Kolakoski word- repetition in words, avoiding repetition, repetition threshold- (complete) de Bruijn graphs- concepts from computability theory and decidability issues- Post correspondence problem and application to mortality of matrices- origins of combinatorics on words- bibliographic notes- languages of finite words, regular languages- factorial, prefix/suffix closed languages, trees and codes- unambiguous and deterministic automata, Kleene's theorem- growth function of regular languages- non-deterministic automata and determinization- radix order, first word of each length and decimation of a regular language- the theory of the minimal automata- an introduction to algebraic automata theory, the syntactic monoid and thesyntactic complexity- star-free languages and a theorem of Schu tzenberger- rational formal series and weighted automata- context-free languages, pushdown automata and grammars- growth function of context-free languages, Parikh's theorem- some decidable and undecidable problems in formal language theory- bibliographic notes- factor complexity, Morse-Hedlund theorem- arithmetic complexity, Van Der Waerden theorem, pattern complexity - recurrence, uniform recurrence, return words- Sturmian words, coding of rotations, Kronecker's theorem- frequencies of letters, factors and primitive morphism- critical exponent- factor complexity of automatic sequences- factor complexity of purely morphic sequences- primitive words, conjugacy, Lyndon word- abelianisation and abelian complexity- bibliographic notes- automatic sequences, equivalent definitions- a theorem of Cobham, equivalence of automatic sequences with constantlength morphic sequences- a few examples of well-known automatic sequences- about Derksen's theorem- some morphic sequences are not automatic- abstract numeration system and S-automatic sequences- k - -automatic sequences- bibliographic notes- numeration systems, greedy algorithm- positional numeration systems, recognizable sets of integers- divisi. |
|
650 | 0 | _aMachine theory. | |
650 | 0 | _aFormal languages. | |
650 | 0 | _aComputer programming. | |
650 | 4 |
_aComputer programming _xCongresses. |
|
650 | 4 |
_aFormal languages _xCongresses. |
|
650 | 4 |
_aMachine theory _xCongresses. |
|
650 | 7 |
_aCOMPUTERS _xProgramming Languages _xGeneral. _2bisacsh |
|
650 | 7 |
_aComputer programming. _2fast _0(OCoLC)fst00872390 |
|
650 | 7 |
_aFormal languages. _2fast _0(OCoLC)fst00932922 |
|
650 | 7 |
_aMachine theory. _2fast _0(OCoLC)fst01004846 |
|
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aRigo, Michel. _tFormal Languages, Automata and Numeration Systems. _dHoboken : Wiley, ©2014 _z9781848216150 |
830 | 0 | _aNetworks and telecommunications series. | |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9781119042853 _zWiley Online Library |
942 |
_2ddc _cBK |
||
999 |
_c207672 _d207672 |