000 05458cam a2200661Mu 4500
001 ocn897070173
003 OCoLC
005 20171026081324.0
006 m o d
007 cr cnu---unuuu
008 141129s2014 xx o 000 0 eng d
016 7 _a016965771
_2Uk
020 _a9781118979792
_q(electronic bk.)
020 _a1118979796
_q(electronic bk.)
020 _z9781118979808
020 _z111897980X
029 1 _aCHBIS
_b010442240
029 1 _aCHNEW
_b000889401
029 1 _aCHVBK
_b334092787
029 1 _aCHVBK
_b374481202
029 1 _aDEBBG
_bBV042990236
029 1 _aDEBBG
_bBV043397329
029 1 _aDEBBG
_bBV043613853
029 1 _aDEBSZ
_b422995231
035 _a(OCoLC)897070173
_z(OCoLC)903611583
040 _aEBLCP
_beng
_epn
_cEBLCP
_dIDEBK
_dUKMGB
_dDG1
_dYDXCP
_dDEBSZ
_dRECBK
_dOCLCF
_dDEBBG
_dOCLCQ
_dOCLCO
049 _aMAIN
050 4 _aQA39.3 .Y48 2015
082 0 4 _a510
100 1 _aYevick, David.
245 1 0 _aFundamental Math and Physics for Scientists and Engineers /
_h[electronic resource]
260 _aHoboken :
_bWiley,
_c2014.
300 _a1 online resource (464 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _a11.10 Systems of Equations, Eigenvalues, and Eigenvectors.
505 0 _aFundamental Math and Physics for Scientists and Engineers; Copyright; Contents; Chapter 1 Introduction; Chapter 2 Problem Solving; 2.1 Analysis; 2.2 Test-Taking Techniques; 2.2.1 Dimensional Analysis; Chapter 3 Scientific Programming; 3.1 Language Fundamentals; 3.1.1 Octave Programming; Chapter 4 Elementary Mathematics; 4.1 Algebra; 4.1.1 Equation Manipulation; 4.1.2 Linear Equation Systems; 4.1.3 Factoring; 4.1.4 Inequalities; 4.1.5 Sum Formulas; 4.1.6 Binomial Theorem; 4.2 Geometry; 4.2.1 Angles; 4.2.2 Triangles; 4.2.3 Right Triangles; 4.2.4 Polygons; 4.2.5 Circles.
505 8 _a4.3 Exponential, Logarithmic Functions, and Trigonometry4.3.1 Exponential Functions; 4.3.2 Inverse Functions and Logarithms; 4.3.3 Hyperbolic Functions; 4.3.4 Complex Numbers and Harmonic Functions; 4.3.5 Inverse Harmonic and Hyperbolic Functions; 4.3.6 Trigonometric Identities; 4.4 Analytic Geometry; 4.4.1 Lines and Planes; 4.4.2 Conic Sections; 4.4.3 Areas, Volumes, and Solid Angles; Chapter 5 Vectors and Matrices; 5.1 Matrices and Matrix Products; 5.2 Equation Systems; 5.3 Traces and Determinants; 5.4 Vectors and Inner Products; 5.5 Cross and Outer Products; 5.6 Vector Identities.
505 8 _a5.7 Rotations and Orthogonal Matrices5.8 Groups and Matrix Generators; 5.9 Eigenvalues and Eigenvectors; 5.10 Similarity Transformations; Chapter 6 Calculus of a Single Variable; 6.1 Derivatives; 6.2 Integrals; 6.3 Series; Chapter 7 Calculus of Several Variables; 7.1 Partial Derivatives; 7.2 Multidimensional Taylor Series and Extrema; 7.3 Multiple Integration; 7.4 Volumes and Surfaces of Revolution; 7.5 Change of Variables and Jacobians; Chapter 8 Calculus of Vector Functions; 8.1 Generalized Coordinates; 8.2 Vector Differential Operators; 8.3 Vector Differential Identities.
505 8 _a8.4 Gauss ́s and Stokes ́ Laws and Green ́s Identities8.5 Lagrange Multipliers; Chapter 9 Probability Theory and Statistics; 9.1 Random Variables, Probability Density, and Distributions; 9.2 Mean, Variance, and Standard Deviation; 9.3 Variable Transformations; 9.4 Moments and Moment-Generating Function; 9.5 Multivariate Probability Distributions, Covariance, and Correlation; 9.6 Gaussian, Binomial, and Poisson Distributions; 9.7 Least Squares Regression; 9.8 Error Propagation; 9.9 Numerical Models; Chapter 10 Complex Analysis; 10.1 Functions of a Complex Variable.
505 8 _a10.2 Derivatives, Analyticity, and the Cauchy-Riemann Relations10.3 Conformal Mapping; 10.4 Cauchy ́s Theorem and Taylor and Laurent Series; 10.5 Residue Theorem; 10.6 Dispersion Relations; 10.7 Method of Steepest Decent; Chapter 11 Differential Equations; 11.1 Linearity, Superposition, and Initial and Boundary Values; 11.2 Numerical Solutions; 11.3 First-Order Differential Equations; 11.4 Wronskian; 11.5 Factorization; 11.6 Method of Undetermined Coefficients; 11.7 Variation of Parameters; 11.8 Reduction of Order; 11.9 Series Solution and Method of Frobenius.
520 _aThis text summarizes the core undergraduate physics curriculum together with the mathematics frequently encountered in engineering and physics calculations, focusing on content relevant to practical applications. Covers major undergraduate physics topics including the complete Physics GRE subject examination syllabusOverview of key results in undergraduate applied mathematics and introduces scientific programmingPresents simple, coherent derivations and illustrations of fundamental concepts.
588 0 _aPrint version record.
650 0 _aMathematics.
650 0 _aPhysics.
650 4 _aEngineers.
650 4 _aMathematics.
650 4 _aPhysics.
650 4 _aScience.
650 7 _aMathematics.
_2fast
_0(OCoLC)fst01012163
650 7 _aPhysics.
_2fast
_0(OCoLC)fst01063025
655 4 _aElectronic books.
700 1 _aYevick, Hannah.
776 0 8 _iPrint version:
_aYevick, David.
_tFundamental Math and Physics for Scientists and Engineers.
_dHoboken : Wiley, ©2014
_z9780470407844
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118979792
_zWiley Online Library
942 _2ddc
_cBK
999 _c207772
_d207772