000 | 05303cam a2200709 i 4500 | ||
---|---|---|---|
001 | ocn899267731 | ||
003 | OCoLC | ||
005 | 20171025131321.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 150105s2015 enk ob 001 0 eng | ||
010 | _a 2015000336 | ||
020 |
_a9781118790410 _q(Adobe PDF) |
||
020 |
_a1118790413 _q(Adobe PDF) |
||
020 |
_a9781118790441 _q(ePub) |
||
020 |
_a1118790448 _q(ePub) |
||
020 | _a9781118789971 | ||
020 | _a1118789970 | ||
020 |
_a1118790464 _q(cloth) |
||
020 |
_a9781118790465 _q(cloth) |
||
020 |
_z9781118790465 _q(cloth) |
||
029 | 1 |
_aNLGGC _b394004426 |
|
029 | 1 |
_aGBVCP _b856571423 |
|
029 | 1 |
_aDEBBG _bBV043397422 |
|
035 |
_a(OCoLC)899267731 _z(OCoLC)910282291 _z(OCoLC)911889251 _z(OCoLC)912319428 _z(OCoLC)961518087 _z(OCoLC)962727804 |
||
037 |
_a788239 _bMIL |
||
040 |
_aDLC _beng _erda _epn _cDLC _dOCLCF _dN$T _dDG1 _dYDXCP _dIDEBK _dCOO _dEBLCP _dNLGGC _dCDX _dE7B _dOCLCQ _dDEBBG _dK6U |
||
042 | _apcc | ||
049 | _aMAIN | ||
050 | 0 | 0 | _aQK891 |
072 | 7 |
_aSCI _x011000 _2bisacsh |
|
082 | 0 | 0 |
_a581.3/5 _223 |
100 | 1 | _aKapuganti, Jagadis G. | |
245 | 1 | 0 |
_aAlternative respiratory pathways in higher plants / _cKapuganti Jagadis Gupta, Luis A.J. Mur, and Bhagyalakshmi Neelwarne. _h[electronic resource] |
246 | 3 | 0 | _aRespiratory pathways in higher plants |
264 | 1 |
_aChichester, West Sussex : _bJohn Wiley & Sons, Inc., _c2015. |
|
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aTitle page; Table of Contents; List of contributors; Preface; SECTION A: Physiology of plant respiration and involvement of alternative oxidase; CHAPTER 1: Integrating classical and alternative respiratory pathways; Introduction; Alternative oxidase (AOX); NADPH dehydogenases linked to AOX; Uncoupling proteins (UCPs); Electron transfer flavoprotein (ETF); Deploying electron dissipatory mechanisms whilst maintaining ATP production under stress situations; Conclusions; References | |
505 | 8 | _aCHAPTER 2: Non-coupled pathways of plant mitochondrial electron transport and the maintenance of photorespiratory fluxIntroduction: Carbon fluxes through plant mitochondria in the light; Activation of glycine oxidation by malate; Oscillations of respiratory and photorespiratory fluxes; NADH and NADPH dehydrogenases in the mitochondrial membranes; Increase of the mitochondrial capacity in the light via engagement of rotenone-insensitive dehydrogenases; Physiological role of alternative oxidase; Equilibration of adenylates in the intermembrane space of mitochondria | |
505 | 8 | _aBicarbonate pool and refixation of photorespiratory carbonMalate and citrate valves; Conclusion; References; CHAPTER 3: Taxonomic distribution of alternative oxidase in plants; What is alternative oxidase?; Historical investigations of AOX in plants; Taxonomic distribution of alternative oxidase in all domains of life; Taxonomic distribution of alternative oxidase in plants; Chlorophyte algae; Streptophyte algae; Land plants; Recent functional hypotheses based on studies of AOX in multiple plants; Where should efforts be focused next?; References | |
505 | 8 | _aCHAPTER 4: Alternative pathways and phosphate and nitrogen nutritionIntroduction; Phosphate limitation; Nitrogen nutrition and respiratory pathways; Summary; References; CHAPTER 5: Structural elucidation of the alternative oxidase reveals insights into the catalytic cycle and regulation of activity; Introduction; Function and species spread of alternative oxidase; Structure of the trypanosomal alternative oxidase; Models of the alternative oxidase; Modelling the structure of plant alternative oxidase; Summary; References | |
505 | 8 | _aCHAPTER 6: The role of alternative respiratory proteins in nitric oxide metabolism by plant mitochondriaIntroduction; Targets of NO in mitochondria; Mitochondrial NO degradation; NO degradation by external NAD(P)H dehydrogenases; Involvement of AOX in NO signalling and homeostasis; Oxidative pathways for NO synthesis; Reductive pathways for NO synthesis; Summary; Acknowledgments; References; CHAPTER 7: Control of mitochondrial metabolism through functional and spatial integration of mitochondria; Introduction; Functional and spatial integration: scope of the review | |
588 | 0 | _aPrint version record and CIP data provided by publisher. | |
650 | 0 |
_aPlants _xRespiration. |
|
650 | 0 | _aPlant genetics. | |
650 | 0 | _aPlant physiology. | |
650 | 7 |
_aSCIENCE _xLife Sciences _xBotany. _2bisacsh |
|
650 | 7 |
_aPlant genetics. _2fast _0(OCoLC)fst01065459 |
|
650 | 7 |
_aPlant physiology. _2fast _0(OCoLC)fst01065616 |
|
650 | 7 |
_aPlants _xRespiration. _2fast _0(OCoLC)fst01066090 |
|
655 | 4 | _aElectronic books. | |
655 | 0 | _aElectronic books. | |
700 | 1 | _aMur, Luis A. J. | |
700 | 1 | _aNeelwarne, Bhagyalakshmi. | |
776 | 0 | 8 |
_iPrint version: _aKapuganti, Jagadis G. _tAlternative respiratory pathways in higher plants. _dChichester, West Sussex : John Wiley & Sons, Inc., 2015 _z9781118790465 _w(DLC) 2014050165 |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9781118789971 _zWiley Online Library |
942 |
_2ddc _cBK |
||
999 |
_c207822 _d207822 |