000 04407cam a2200745 i 4500
001 ocn900565386
003 OCoLC
005 20171025125148.0
006 m o d
007 cr |||||||||||
008 150116s2015 nju ob 001 0 eng
010 _a 2015002169
015 _aGBB509468
_2bnb
016 7 _a017019885
_2Uk
020 _a9781119010241 (ePub)
020 _a1119010241 (ePub)
020 _a9781119010234 (Adobe PDF)
020 _a1119010233 (Adobe PDF)
020 _z9781118893760 (hardback)
020 _a9781119010258
020 _a111901025X
020 _a111889376X
020 _a9781118893760
029 1 _aCHVBK
_b334086531
029 1 _aCHBIS
_b010442428
029 1 _aDEBSZ
_b431874530
029 1 _aDEBBG
_bBV042734461
029 1 _aNZ1
_b16078542
029 1 _aDEBSZ
_b449477371
029 1 _aDEBBG
_bBV043397463
029 1 _aDEBBG
_bBV043891954
035 _a(OCoLC)900565386
_z(OCoLC)961632947
_z(OCoLC)962630693
040 _aDLC
_beng
_erda
_cDLC
_dN$T
_dDG1
_dEBLCP
_dE7B
_dUKMGB
_dRECBK
_dYDXCP
_dDEBSZ
_dCOO
_dOCLCO
_dIDEBK
_dCDX
_dB24X7
_dDEBBG
_dD6H
_dK6U
042 _apcc
049 _aMAIN
050 0 0 _aLB1027.23
072 7 _aEDU
_x001000
_2bisacsh
072 7 _aEDU
_x036000
_2bisacsh
082 0 0 _a371.3
_223
084 _aTEC008060
_aTEC064000
_aCOM021030
_2bisacsh
100 1 _aCook, Diane J.,
_d1963-
245 1 0 _aActivity learning : discovering, recognizing, and predicting human behavior from sensor data /
_cDiane J. Cook, Narayanan C. Krishnan.
_h[electronic resource]
264 1 _aHoboken, NJ :
_bWiley,
_c2015.
300 _a1 online resource.
336 _atext
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
490 1 _aWiley Series on Parallel and Distributed Computing
504 _aIncludes bibliographical references and index.
505 8 _aMachine generated contents note: 1 Introduction 2 Activities 2.1 Definitions 2.2 Classes of Activities 2.3 Additional Reading 3 Sensing 3.1 Sensors Used for Activity Learning 3.2 Sample Sensor Datasets 3.3 Features 3.4 Multisensor Fusion 3.5 Additional Reading 4 Machine Learning 4.1 Supervised Learning Framework 4.2 Naïve Bayes Classifier 4.3 Gaussian Mixture Model 4.4 Hidden Markov Model 4.5 Decision Tree 4.6 Support Vector Machine 4.7 Conditional Random Field 4.8 Combining Classifier Models 4.9 Dimensionality Reduction 4.10 Additional Reading 5 Activity Recognition 5.1 Activity Segmentation 5.2 Sliding Windows 5.3 Unsupervised Segmentation 5.4 Measuring Performance 5.5 Additional Reading 6 Activity Discovery 6.1 Zero-Shot Learning 6.2 Sequence Mining 6.3 Clustering 6.4 Topic Models 6.5 Measuring Performance 6.6 Additional Reading 7 Activity Prediction 7.1 Activity Sequence Prediction 7.2 Activity Forecasting 7.3 Probabilistic Graph-Based Activity Prediction 7.4 Rule-Based Activity Timing Prediction 7.5 Measuring Performance 7.6 Additional Reading 8 Activity Learning in the Wild 8.1 Collecting Annotated Sensor Data 8.2 Transfer Learning 8.3 Multi-Label Learning 8.4 Activity Learning for Multiple Individuals 8.5 Additional Reading 9 Applications of Activity Learning 9.1 Health 9.2 Activity-Aware Services 9.3 Security and Emergency Management 9.4 Activity Reconstruction, Expression and Visualization 9.5 Analyzing Human Dynamics 9.6 Additional Reading 10 The Future of Activity Learning Appendix: Sample Activity Data Bibliography.
520 _a"The book provides an in-depth look at computational approaches to activity learning from sensor data"--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher.
650 0 _aActive learning
_xData processing.
650 0 _aDetectors
_xData processing.
650 0 _aMultisensor data fusion.
650 7 _aTECHNOLOGY & ENGINEERING / Electronics / Digital.
_2bisacsh
650 7 _aTECHNOLOGY & ENGINEERING / Sensors.
_2bisacsh
650 7 _aCOMPUTERS / Database Management / Data Mining.
_2bisacsh
655 4 _aElectronic books.
655 0 _aElectronic books.
776 0 8 _iPrint version:
_aCook, Diane J., 1963-
_tActivity learning
_dHoboken, NJ : Wiley, 2015
_z9781118893760
_w(DLC) 2014039501
830 0 _aWiley series on parallel and distributed computing.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781119010258
_zWiley Online Library
942 _2ddc
_cBK
999 _c207844
_d207844