000 06174cam a2200733 i 4500
001 ocn902986846
003 OCoLC
005 20171025110349.0
006 m o d
007 cr |||||||||||
008 150206s2015 nju ob 001 0 eng
010 _a 2015005260
020 _a9781118799659 (ePub)
020 _a1118799658 (ePub)
020 _a9781118799680 (Adobe PDF)
020 _a1118799682 (Adobe PDF)
020 _z9781118799642 (cloth)
020 _a9781118799635
020 _a1118799631
020 _z111879964X
029 1 _aAU@
_b000054214064
029 1 _aDEBBG
_bBV043397505
035 _a(OCoLC)902986846
_z(OCoLC)918624104
_z(OCoLC)922313856
_z(OCoLC)927508951
040 _aDLC
_beng
_erda
_cDLC
_dYDX
_dOCLCF
_dN$T
_dIDEBK
_dYDXCP
_dEBLCP
_dCOO
_dDG1
_dCDX
_dCCO
_dOCLCQ
_dDEBBG
_dKSU
_dOCLCQ
042 _apcc
049 _aMAIN
050 0 0 _aQA273
072 7 _aMAT
_x003000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
082 0 0 _a519.5
_223
100 1 _aRohatgi, V. K.,
_d1939-
245 1 3 _aAn introduction to probability theory and mathematical statistics /
_cVijay K. Rohatgi and A.K.Md. Ehsanes Saleh.
_h[electronic resource]
250 _a3rd edition.
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons, Inc.,
_c[2015]
300 _a1 online resource.
336 _atext
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
490 1 _aWiley series in probability and statistics
504 _aIncludes bibliographical references and index.
505 0 _aTitle Page; Copyright Page; CONTENTS; PREFACE TO THE THIRD EDITION; PREFACE TO THE SECOND EDITION; PREFACE TO THE FIRST EDITION; ACKNOWLEDGMENTS; ENUMERATION OF THEOREMS AND REFERENCES; CHAPTER 1 PROBABILITY; 1.1 INTRODUCTION; 1.2 SAMPLE SPACE; 1.3 PROBABILITY AXIOMS; 1.4 COMBINATORICS: PROBABILITY ON FINITE SAMPLE SPACES; 1.5 CONDITIONAL PROBABILITY AND BAYES THEOREM; 1.6 INDEPENDENCE OF EVENTS; CHAPTER 2RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS; 2.1 INTRODUCTION; 2.2 RANDOM VARIABLES; 2.3 PROBABILITY DISTRIBUTION OF A RANDOM VARIABLE; 2.4 DISCRETE AND CONTINUOUS RANDOM VARIABLES
505 8 _a2.5 FUNCTIONS OF A RANDOM VARIABLECHAPTER 3MOMENTS AND GENERATING FUNCTIONS; 3.1 INTRODUCTION; 3.2 MOMENTS OF A DISTRIBUTION FUNCTION; 3.3 GENERATING FUNCTIONS; 3.4 SOME MOMENT INEQUALITIES; CHAPTER 4MULTIPLE RANDOM VARIABLES; 4.1 INTRODUCTION; 4.2 MULTIPLE RANDOM VARIABLES; 4.3 INDEPENDENT RANDOM VARIABLES; 4.4 FUNCTIONS OF SEVERAL RANDOM VARIABLES; 4.5 COVARIANCE, CORRELATION AND MOMENTS; 4.6 CONDITIONAL EXPECTATION; 4.7 ORDER STATISTICS AND THEIR DISTRIBUTIONS; CHAPTER 5SOME SPECIAL DISTRIBUTIONS; 5.1 INTRODUCTION; 5.2 SOME DISCRETE DISTRIBUTIONS; 5.2.1 Degenerate Distribution
505 8 _a5.2.2 Two-Point Distribution5.2.3 Uniform Distribution on n Points; 5.2.4 Binomial Distribution; 5.2.5 Negative Binomial Distribution (Pascal or Waiting Time Distribution); 5.2.6 Hypergeometric Distribution; 5.2.7 Negative Hypergeometric Distribution; 5.2.8 Poisson Distribution; 5.2.9 Multinomial Distribution; 5.2.10 Multivariate Hypergeometric Distribution; 5.2.11 Multivariate Negative Binomial Distribution; 5.3 SOME CONTINUOUS DISTRIBUTIONS; 5.3.1 Uniform Distribution (Rectangular Distribution); 5.3.2 Gamma Distribution; 5.3.3 Beta Distribution; 5.3.4 Cauchy Distribution
505 8 _a5.3.5 Normal Distribution (the Gaussian Law)5.3.6 Some Other Continuous Distributions; 5.4 BIVARIATE AND MULTIVARIATE NORMAL DISTRIBUTIONS; 5.5 EXPONENTIAL FAMILY OF DISTRIBUTIONS; CHAPTER 6SAMPLE STATISTICS AND THEIR DISTRIBUTIONS; 6.1 INTRODUCTION; 6.2 RANDOM SAMPLING; 6.3 SAMPLE CHARACTERISTICS AND THEIR DISTRIBUTIONS; 6.4 CHI-SQUARE, t-, AND F-DISTRIBUTIONS: EXACT SAMPLINGDISTRIBUTIONS; 6.5 DISTRIBUTION OF (X,S2) IN SAMPLING FROM A NORMALPOPULATION; 6.6 SAMPLING FROM A BIVARIATE NORMAL DISTRIBUTION; CHAPTER 7BASIC ASYMPTOTICS: LARGE SAMPLE THEORY; 7.1 INTRODUCTION
505 8 _a7.2 modes of convergence7.3 weak law of large numbers; 7.4 strong law of large numbers; 7.5 limiting moment generating functions; 7.6 central limit theorem; 7.7 large sample theory; chapter 8parametric point estimation; 8.1 introduction; 8.2 problem of point estimation; 8.3 sufficiency, completeness and ancillarity; 8.4 unbiased estimation; 8.5 unbiased estimation (continued): a lower bound forthe variance of an estimator; 8.6 substitution principle (method of moments); 8.7 maximum likelihood estimators; 8.8 bayes and minimax estimation; 8.9 principle of equivariance
520 _aA well-balanced introduction to probability theory and mathematical statistics Featuring a comprehensive update, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided into three parts, the Third Edition begins by presenting the fundamentals and foundations of probability. The second part addresses statistical inference, and the remaining chapters focus on special topics. Featuring a substantial revision to include recent developments, An Introduction to Probability and Statistics, Third Edition also.
588 _aDescription based on print version record and CIP data provided by publisher.
650 0 _aProbabilities.
650 0 _aMathematical statistics.
650 7 _aMathematical statistics.
_2fast
_0(OCoLC)fst01012127
650 7 _aProbabilities.
_2fast
_0(OCoLC)fst01077737
650 7 _aMATHEMATICS / Applied
_2bisacsh
650 7 _aMATHEMATICS / Probability & Statistics / General
_2bisacsh
650 4 _aMathematical statistics.
650 4 _aMathematics.
650 4 _aProbabilities.
655 4 _aElectronic books.
655 0 _aElectronic books.
700 1 _aSaleh, A. K. Md. Ehsanes.
776 0 8 _iPrint version:
_aRohatgi, V. K., 1939-
_tIntroduction to probability theory and mathematical statistics
_b3rd edition.
_dHoboken, New Jersey : John Wiley & Sons, Inc., [2015]
_z9781118799642
_w(DLC) 2015004848
830 0 _aWiley series in probability and statistics.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118799635
_zWiley Online Library
942 _2ddc
_cBK
999 _c207874
_d207874