000 | 05106cam a2200553Ii 4500 | ||
---|---|---|---|
001 | ocn872701090 | ||
003 | OCoLC | ||
005 | 20171023121321.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 140124s2014 enk ob 001 0 eng d | ||
020 |
_a9781118648711 _q(electronic bk.) |
||
020 |
_a1118648714 _q(electronic bk.) |
||
020 |
_a9781848214767 _q(hbk.) |
||
020 |
_a1848214766 _q(hbk.) |
||
020 | _a1306203848 | ||
020 | _a9781306203845 | ||
029 | 1 |
_aDEBSZ _b431583390 |
|
029 | 1 |
_aDEBBG _bBV043396608 |
|
035 |
_a(OCoLC)872701090 _z(OCoLC)865537201 _z(OCoLC)865655770 |
||
037 |
_a551635 _bMIL |
||
040 |
_aCNSPO _beng _erda _epn _cCNSPO _dOCLCO _dYDXCP _dCUS _dVRC _dOCLCF _dCOO _dOCLCQ _dIDEBK _dEBLCP _dCDX _dMEAUC _dAZU _dDEBSZ _dOCLCQ _dDEBBG _dUPM |
||
049 | _aMAIN | ||
050 | 4 |
_aTA460 _b.B27 2014 |
|
082 | 0 | 4 |
_a620.166 _223 |
100 | 1 |
_aBathias, Claude, _eauthor. |
|
245 | 1 | 0 |
_aFatigue limit in metals / _cClaude Bathias. _h[electronic resource] |
264 | 1 |
_aLondon : _bISTE ; _aHoboken, N.J. : _bWiley, _c2014. |
|
300 | _a1 online resource (vi, 114 pages). | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 0 | _aFocus series | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aCover; Title Page; Contents; ACKNOWLEDGEMENTS; CHAPTER 1. INTRODUCTION ON VERY HIGH CYCLE FATIGUE; 1.1. Fatigue limit, endurance limit and fatigue strength; 1.2. Absence of an asymptote on the SN curve; 1.3. Initiation and propagation; 1.4. Fatigue limit or fatigue strength; 1.5. SN curves up to 109 cycles; 1.6. Deterministic prediction of the gigacycle fatigue strength; 1.7. Gigacycle fatigue of alloys without flaws; 1.8. Initiation mechanisms at 109 cycles; 1.9. Conclusion; 1.10. Bibliography; CHAPTER 2. PLASTICITY AND INITIATION IN GIGACYCLE FATIGUE. | |
505 | 8 | _a2.1. Evolution of the initiation site from LCF to GCF2.2. Fish-eye growth; 2.2.1. Fracture surface analysis; 2.2.2. Plasticity in the GCF regime; 2.3. Stresses and crack tip intensity factors around spherical and cylindrical voids and inclusions; 2.3.1. Spherical cavities and inclusions; 2.3.2. Spherical inclusion; 2.3.3. Mismatched inclusion larger than the spherical cavity it occupies; 2.3.4. Cylindrical cavities and inclusions; 2.3.5. Cracking from a hemispherical surface void. | |
505 | 8 | _a2.3.6. Crack tip stress intensity factors for cylindrical inclusions with misfit in both size and material properties2.4. Estimation of the fish-eye formation from the Paris-Hertzberg law; 2.4.1. ""Short crack"" number of cycles; 2.4.2. ""Long crack"" number of cycles; 2.4.3. ""Below threshold"" number of cycles; 2.5. Example of fish-eye formation in a bearing steel; 2.6. Fish-eye formation at the microscopic level; 2.6.1. Dark area observations; 2.6.2. ""Penny-shaped area"" observations; 2.6.3. Fracture surface with large radial ridges; 2.6.4. Identification of the models; 2.6.5. Conclusion. | |
505 | 8 | _a2.7. Instability of microstructure in very high cycle fatigue (VHCF)2.8. Industrial practical case: damage tolerance at 109 cycles; 2.8.1. Fatigue threshold in N18; 2.8.2. Fatigue crack initiation of N18 alloy; 2.8.3. Mechanisms of the GCF of N18 alloy; 2.9. Bibliography; CHAPTER 3. HEATING DISSIPATION IN THE GIGACYCLE REGIME; 3.1. Temperature increase at 20 kHz; 3.2. Detection of fish-eye formation; 3.3. Experimental verification of Nf by thermal dissipation; 3.4. Relation between thermal energy and cyclic plastic energy. | |
505 | 8 | _a3.5. Effect of metallurgical instability at the yield point in ultrasonic fatigue3.6. Gigacycle fatigue of pure metals; 3.6.1. Microplasticity in the ferrite; 3.6.2. Effect of gigacycle fatigue loading on the yield stress in Armco iron; 3.6.3. Temperature measurement on Armco iron; 3.6.4. Intrinsic thermal dissipation in Armco iron; 3.6.5. Analysis of surface fatigue crack on iron; 3.7. Conclusion; 3.8. Bibliography; INDEX. | |
520 | _aIs there a fatigue limit in metals? This question is the main focus of this book. Written by a leading researcher in the field, Claude Bathias presents a thorough and authoritative examination of the coupling between plasticity, crack initiation and heat dissipation for lifetimes that exceed the billion cycle, leading us to question the concept of the fatigue limit, both theoretically and technologically. This is a follow-up to the Fatigue of Materials and Structures series of books previously published in 2011. Contents 1. Introduction on Very High Cycle Fatigue. 2. Plasticity and Initiation in. | ||
588 | 0 | _aOnline resource; title from PDF title page (Wiley, viewed April 3, 2014). | |
650 | 0 |
_aMetals _xFatigue. |
|
650 | 7 |
_aMetals _xFatigue. _2fast _0(OCoLC)fst01018111 |
|
655 | 4 | _aElectronic books. | |
655 | 0 | _aElectronic books. | |
776 | 0 | 8 |
_aBathias, Claude. _tFatigue limit in metals. _dChichester : ISTE and Wiley, 2013 _z1848214766 _w(OCoLC)866880275 |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9781118648704 _zWiley Online Library |
942 |
_2ddc _cBK |
||
999 |
_c208342 _d208342 |