000 05919cam a2200565Mi 4500
001 ocn874098247
003 OCoLC
005 20190328114807.0
006 m o d
007 cr |n|||||||||
008 140321s2014 ne ob 001 0 eng d
040 _aIDEBK
_beng
_erda
_epn
_cIDEBK
_dEBLCP
_dOPELS
_dN$T
_dUKMGB
_dYDXCP
_dCDX
_dOCLCF
_dOCLCQ
_dDEBSZ
_dOCLCQ
_dFEM
_dITD
_dMERER
_dOCLCQ
_dU3W
_dD6H
_dE7B
_dOTZ
_dAU@
_dWYU
_dAUD
016 7 _a016709716
_2Uk
019 _a877868296
_a878141465
_a968014193
_a969024797
020 _a1306510996
_q(electronic bk.)
020 _a9781306510998
_q(electronic bk.)
020 _a9780124104082
_q(electronic bk.)
020 _a0124104088
_q(electronic bk.)
020 _a9780124104549
_q(electronic bk.)
020 _a0124104541
_q(electronic bk.)
035 _a(OCoLC)874098247
_z(OCoLC)877868296
_z(OCoLC)878141465
_z(OCoLC)968014193
_z(OCoLC)969024797
050 4 _aQC39
_b.O384 2014
072 7 _aSCI
_x013010
_2bisacsh
082 0 4 _a621.372
100 1 _aOlivieri, Alejandro.
245 1 0 _aPractical three-way calibration /
_h[electronic resource]
_cAlejandro C. Olivieri and Graciela M. Escandar.
264 1 _aAmsterdam :
_bElsevier,
_c2014.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_2rda
588 0 _aPrint version record.
520 _aPractical Three-Way Calibration is an introductory-level guide to the complex field of analytical calibration with three-way instrumental data. With minimal use of mathematical/statistical expressions, it walks the reader through the analytical methodologies with helpful images and step-by-step explanations. Unlike other books on the subject, there is no need for prior programming experience and no need to learn programming languages. Easy-to-use graphical interfaces and intuitive descriptions of mathematical and statistical concepts make three-way calibration methodologies accessible to analytical chemists and scientists in a wide range of disciplines in industry and academia. Numerous detailed examples of slowly increasing complexity Exposure to several different data sets and techniques through figures and diagrams Computer program screenshots for easy learning without prior knowledge of programming languages Minimal use of mathematical/statistical expressions.
504 _aIncludes bibliographical references and index.
505 0 _aFront Cover; Practical Three-Way Calibration; Copyright; Dedication; Contents; Preface; References; Foreword; Acknowledgments; Chapter 1 -- Calibration Scenarios; 1.1 Calibration; 1.2 Univariate calibration; 1.3 Multivariate calibration; 1.4 Nomenclature for data and calibrations; 1.5 Nomenclature for constituents and samples; 1.6 Multiway calibration; 1.7 Why multiway calibration?; 1.8 Analytical advantages; References; Chapter 2 -- Data Properties; 2.1 Data properties; 2.2 Bilinear data; 2.3 Normalization and concentration effects; 2.4 A word of caution on bilinearity; 2.5 Nonbilinear data.
505 8 _a2.6 Trilinear data2.7 Nontrilinear data; 2.8 Transforming three-way data into matrix data; 2.9 Normalization and concentration effects; 2.10 Classification of three-way data; 2.11 Importance of classifying three-way data; References; Chapter 3 -- Experimental Three-way/Second-order Data; 3.1 Generation of three-way data; 3.2 Matrix fluorescence spectroscopy; 3.3 Chromatography with spectral detection; 3.4 Other second-order instrumental data; 3.5 Data organization in files; 3.6 Samples for calibration and validation; References; Chapter 4 -- The MVC2 Software.
505 8 _a4.1 Methods, models, algorithms and software4.2 The MVC2 software; 4.3 The MVC2 data examples; 4.4 The EEFM_data example; 4.5 Plotting EEFM_data matrices; 4.6 The LCDAD_data example; 4.7 Plotting LCDAD_data matrices; 4.8 Further MVC2 features; References; Chapter 5 -- Parallel Factor Analysis: Trilinear Data; 5.1 Trilinear modeling and decomposition; 5.2 Uniqueness and the second-order advantage; 5.3 Processing the EEFM_data example; 5.4 PARAFAC analysis of a test sample; 5.5 Estimating the number of components; 5.6 Analyte quantitation in the test sample; 5.7 Analysis of the remaining samples.
505 8 _a5.8 Profiles for potential interferents5.9 Further processing options; 5.10 Multiple-sample processing; 5.11 Concluding remarks; 5.12 Homework 1; 5.13 Homework 2; References; Chapter 6 -- Analytical Figures of Merit; 6.1 Definition of figure of merit; 6.2 Importance of analytical figures of merit; 6.3 Sensitivity; 6.4 Selectivity; 6.5 Analytical sensitivity; 6.6 Prediction uncertainty; 6.7 Limit of detection; 6.8 Limit of quantitation; 6.9 The complete PARAFAC report; 6.10 Final considerations; References; Chapter 7 -- Parallel Factor Analysis: Nontrilinear Data of Type 1.
505 8 _a7.1 An apparent contradiction7.2 Description of the data set; 7.3 PARAFAC study of a test sample; 7.4 Increasing the number of PARAFAC components; 7.5 Study of the remaining samples; 7.6 Other separation data and what to do; 7.7 A PARAFAC variant for chromatographic data; 7.8 PARAFAC2 calibration with the LCDAD_data; 7.9 Chromatographic alignment; 7.10 Homework; References; Chapter 8 -- Multivariate Curve Resolution-Alternating Least-Squares; 8.1 Multivariate curve resolution-alternating least-squares; 8.2 Estimating the number of components; 8.3 MCR-ALS initialization; 8.4 Constraints.
650 0 _aChemometrics.
650 0 _aCalibration.
650 7 _aSCIENCE
_xChemistry
_xAnalytic.
_2bisacsh
650 7 _aCalibration.
_2fast
_0(OCoLC)fst00844249
650 7 _aChemometrics.
_2fast
_0(OCoLC)fst01736550
655 4 _aElectronic books.
700 1 _aEscandar, Graciela M.
776 0 8 _iPrint version:
_z9781306510998
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780124104082
999 _c246894
_d246894