000 03505cam a2200589Ii 4500
001 ocn875558741
003 OCoLC
005 20190328114807.0
006 m o d
007 cr cnu---unuuu
008 140403s2014 ne ob 000 0 eng d
010 _a 2014931794
040 _aN$T
_beng
_erda
_epn
_cN$T
_dOPELS
_dYDXCP
_dE7B
_dOCLCF
_dCOO
_dREB
_dOCLCQ
_dRIU
_dFEM
_dOCLCO
_dU3W
_dD6H
_dOTZ
_dWYU
015 _aGBB412503
_2bnb
016 7 _a016620597
_2Uk
019 _a898067637
_a969047134
_a1026449990
_a1066050037
020 _a9780128010501
_q(electronic bk.)
020 _a0128010509
_q(electronic bk.)
020 _z9780128010013
020 _z0128010010
020 _z9780128102695 (pbk)
020 _z0128102691 (pbk)
035 _a(OCoLC)875558741
_z(OCoLC)898067637
_z(OCoLC)969047134
_z(OCoLC)1026449990
_z(OCoLC)1066050037
050 4 _aQA300
072 7 _aMAT
_x005000
_2bisacsh
072 7 _aMAT
_x034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aBashirov, Agamirza E.,
_eauthor.
245 1 0 _aMathematical analysis fundamentals /
_h[electronic resource]
_cA.E. Bashirov.
250 _a1st ed.
264 1 _aAmsterdam :
_bElsevier,
_c2014.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_2rda
490 1 _aElsevier insights
504 _aIncludes bibliographical references.
588 0 _aPrint version record.
520 _aThe author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options. Friendly and well-rounded presentation of pre-analysis topics such as sets, proof techniques and systems of numbers. Deeper discussion of the basic concept of convergence for the system of real numbers, pointing out its specific features, and for metric spaces Presentation of Riemann integration and its place in the whole integration theory for single variable, including the Kurzweil-Henstock integration Elements of multiplicative calculus aiming to demonstrate the non-absoluteness of Newtonian calculus.
505 0 _a1. Sets and proofs -- 2. Numbers -- 3. Convergence -- 4. Point set theory -- 5. Continuity -- 6. Space C(E, E') -- 7. Differentiation -- 8. Bounded variation -- 9. Riemann integration -- 10. Generalizations of Riemann integration -- 11. Transcendental functions -- 12. Fourier series and integrals.
650 0 _aMathematical analysis.
650 7 _aMATHEMATICS
_xCalculus.
_2bisacsh
650 7 _aMATHEMATICS
_xMathematical Analysis.
_2bisacsh
650 7 _aMathematical analysis.
_2fast
_0(OCoLC)fst01012068
650 7 _aAnalysis
_2gnd
_0(DE-588)4001865-9
655 4 _aElectronic books.
655 0 _aElectronic books.
776 0 8 _iPrint version:
_aBashirov, Agamirza E.
_tMathematical analysis fundamentals
_z9780128010013
_w(OCoLC)870424847
830 0 _aElsevier insights.
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780128010013
999 _c246896
_d246896