000 | 03505cam a2200589Ii 4500 | ||
---|---|---|---|
001 | ocn875558741 | ||
003 | OCoLC | ||
005 | 20190328114807.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140403s2014 ne ob 000 0 eng d | ||
010 | _a 2014931794 | ||
040 |
_aN$T _beng _erda _epn _cN$T _dOPELS _dYDXCP _dE7B _dOCLCF _dCOO _dREB _dOCLCQ _dRIU _dFEM _dOCLCO _dU3W _dD6H _dOTZ _dWYU |
||
015 |
_aGBB412503 _2bnb |
||
016 | 7 |
_a016620597 _2Uk |
|
019 |
_a898067637 _a969047134 _a1026449990 _a1066050037 |
||
020 |
_a9780128010501 _q(electronic bk.) |
||
020 |
_a0128010509 _q(electronic bk.) |
||
020 | _z9780128010013 | ||
020 | _z0128010010 | ||
020 | _z9780128102695 (pbk) | ||
020 | _z0128102691 (pbk) | ||
035 |
_a(OCoLC)875558741 _z(OCoLC)898067637 _z(OCoLC)969047134 _z(OCoLC)1026449990 _z(OCoLC)1066050037 |
||
050 | 4 | _aQA300 | |
072 | 7 |
_aMAT _x005000 _2bisacsh |
|
072 | 7 |
_aMAT _x034000 _2bisacsh |
|
082 | 0 | 4 |
_a515 _223 |
100 | 1 |
_aBashirov, Agamirza E., _eauthor. |
|
245 | 1 | 0 |
_aMathematical analysis fundamentals / _h[electronic resource] _cA.E. Bashirov. |
250 | _a1st ed. | ||
264 | 1 |
_aAmsterdam : _bElsevier, _c2014. |
|
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _2rda |
||
490 | 1 | _aElsevier insights | |
504 | _aIncludes bibliographical references. | ||
588 | 0 | _aPrint version record. | |
520 | _aThe author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options. Friendly and well-rounded presentation of pre-analysis topics such as sets, proof techniques and systems of numbers. Deeper discussion of the basic concept of convergence for the system of real numbers, pointing out its specific features, and for metric spaces Presentation of Riemann integration and its place in the whole integration theory for single variable, including the Kurzweil-Henstock integration Elements of multiplicative calculus aiming to demonstrate the non-absoluteness of Newtonian calculus. | ||
505 | 0 | _a1. Sets and proofs -- 2. Numbers -- 3. Convergence -- 4. Point set theory -- 5. Continuity -- 6. Space C(E, E') -- 7. Differentiation -- 8. Bounded variation -- 9. Riemann integration -- 10. Generalizations of Riemann integration -- 11. Transcendental functions -- 12. Fourier series and integrals. | |
650 | 0 | _aMathematical analysis. | |
650 | 7 |
_aMATHEMATICS _xCalculus. _2bisacsh |
|
650 | 7 |
_aMATHEMATICS _xMathematical Analysis. _2bisacsh |
|
650 | 7 |
_aMathematical analysis. _2fast _0(OCoLC)fst01012068 |
|
650 | 7 |
_aAnalysis _2gnd _0(DE-588)4001865-9 |
|
655 | 4 | _aElectronic books. | |
655 | 0 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aBashirov, Agamirza E. _tMathematical analysis fundamentals _z9780128010013 _w(OCoLC)870424847 |
830 | 0 | _aElsevier insights. | |
856 | 4 | 0 |
_3ScienceDirect _uhttp://www.sciencedirect.com/science/book/9780128010013 |
999 |
_c246896 _d246896 |