000 05414cam a2200589Ia 4500
001 ocn890854311
003 OCoLC
005 20190328114808.0
006 m o d
007 cr cnu---unuuu
008 140303s2014 cau o 000 0 eng d
040 _aIDEBK
_beng
_epn
_cIDEBK
_dOCLCO
_dN$T
_dE7B
_dUIU
_dCHVBK
_dOCLCF
_dOCLCQ
_dNRC
_dOCLCQ
_dUAB
_dK6U
_dCOO
_dLIV
_dD6H
_dVVB
_dU3W
_dWYU
020 _a9780128010990
_q(electronic bk.)
020 _a0128010991
_q(electronic bk.)
020 _a132211434X
_q(electronic bk.)
020 _a9781322114347
_q(electronic bk.)
020 _z9780128009536
035 _a(OCoLC)890854311
050 4 _aQC174.12
072 7 _aSCI
_x024000
_2bisacsh
072 7 _aSCI
_x041000
_2bisacsh
072 7 _aSCI
_x055000
_2bisacsh
082 0 4 _a530.12
_223
100 1 _aWittek, Peter,
_eauthor.
245 1 0 _aQuantum machine learning : what quantum computing means to data mining /
_h[electronic resource]
_cPeter Wittek.
250 _a1st ed.
264 1 _aSan Diego, CA :
_bAcademic Press, an imprint of Elsevier,
_c2014.
300 _a1 online resource (176 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aPrint version record.
505 0 _aFront Cover; Quantum Machine Learning: What Quantum Computing Meansto Data Mining; Copyright; Contents; Preface; Notations; Part One Fundamental Concepts; Chapter 1: Introduction; 1.1Learning Theory and Data Mining; 1.2. Why Quantum Computers?; 1.3.A Heterogeneous Model; 1.4. An Overview of Quantum Machine Learning Algorithms; 1.5. Quantum-Like Learning on Classical Computers; Chapter 2: Machine Learning; 2.1. Data-Driven Models; 2.2. Feature Space; 2.3. Supervised and Unsupervised Learning; 2.4. Generalization Performance; 2.5. Model Complexity; 2.6. Ensembles.
505 8 _a2.7. Data Dependencies and Computational ComplexityChapter 3: Quantum Mechanics; 3.1. States and Superposition; 3.2. Density Matrix Representation and Mixed States; 3.3.Composite Systems and Entanglement; 3.4. Evolution; 3.5. Measurement; 3.6. Uncertainty Relations; 3.7. Tunneling; 3.8. Adiabatic Theorem; 3.9. No-Cloning Theorem; Chapter 4:Quantum Computing; 4.1. Qubits and the Bloch Sphere; 4.2. Quantum Circuits; 4.3. Adiabatic Quantum Computing; 4.4. Quantum Parallelism; 4.5. Grover''s Algorithm; 4.6.Complexity Classes; 4.7. Quantum Information Theory; Part Two Classical Learning Algorithms.
505 8 _aChapter 5:Unsupervised Learning5.1. Principal Component Analysis; 5.2. Manifold Embedding; 5.3.K-Means and K-Medians Clustering; 5.4. Hierarchical Clustering; 5.5. Density-Based Clustering; Chapter 6:Pattern Recognition and Neural Networks; 6.1. The Perceptron; 6.2. Hopfield Networks; 6.3. Feedforward Networks; 6.4. Deep Learning; 6.5.Computational Complexity; Chapter 7:Supervised Learning and Support Vector Machines; 7.1.K-Nearest Neighbors; 7.2. Optimal Margin Classifiers; 7.3. Soft Margins; 7.4. Nonlinearity and Kernel Functions; 7.5. Least-Squares Formulation; 7.6. Generalization Performance.
505 8 _a7.7. Multiclass Problems7.8. Loss Functions; 7.9.Computational Complexity; Chapter 8:Regression Analysis; 8.1. Linear Least Squares; 8.2. Nonlinear Regression; 8.3. Nonparametric Regression; 8.4.Computational Complexity; Chapter 9:Boosting; 9.1. Weak Classifiers; 9.2. AdaBoost; 9.3.A Family of Convex Boosters; 9.4. Nonconvex Loss Functions; Part Three Quantum Computing and Machine Learning; Chapter 10:Clustering Structure and Quantum Computing; 10.1. Quantum Random Access Memory; 10.2. Calculating Dot Products; 10.3. Quantum Principal Component Analysis; 10.4. Toward Quantum Manifold Embedding.
505 8 _a10.5. Quantum K-Means10.6. Quantum K-Medians; 10.7. Quantum Hierarchical Clustering; 10.8.Computational Complexity; Chapter 11:Quantum Pattern Recognition; 11.1. Quantum Associative Memory; 11.2. The Quantum Perceptron; 11.3. Quantum Neural Networks; 11.4. Physical Realizations; 11.4.Computational Complexity; Chapter 12:Quantum Classification; 12.1. Nearest Neighbors; 12.2. Support Vector Machines with Grover''s Search; 12.3. Support Vector Machines with Exponential Speedup; 12.4.Computational Complexity; Chapter 13:Quantum Process Tomography and Regression; 13.1. Channel-State Duality.
520 _aBridging the gap between abstract developments in quantum computing and the applied research on machine learning, this book pares down the complexity of the disciplines involved, and focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. --
_cEdited summary from book.
650 0 _aQuantum theory.
650 0 _aData mining.
650 7 _aSCIENCE
_xEnergy.
_2bisacsh
650 7 _aSCIENCE
_xMechanics
_xGeneral.
_2bisacsh
650 7 _aSCIENCE
_xPhysics
_xGeneral.
_2bisacsh
650 7 _aData mining.
_2fast
_0(OCoLC)fst00887946
650 7 _aQuantum theory.
_2fast
_0(OCoLC)fst01085128
650 7 _aMaschinelles Lernen.
_0(DE-588)4193754-5
_2gnd
650 7 _aQuanteninformatik.
_0(DE-588)4705961-8
_2gnd
650 7 _aData Mining.
_0(DE-588)4428654-5
_2gnd
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aWittek, Peter author.
_tQuantum Machine Learning.
_d[San Diego, CA] : Academic Press, 2014
_z9780128009536
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780128009536
999 _c246957
_d246957