000 05576cam a2200589Ma 4500
001 ocn894609039
003 OCoLC
005 20190328114809.0
006 m o d
007 cr |||||||||||
008 141030s2015 ne ob 001 0 eng d
040 _aUKMGB
_beng
_epn
_cUKMGB
_dOCLCO
_dN$T
_dEBLCP
_dUIU
_dYDXCP
_dOCLCF
_dDEBSZ
_dOCLCQ
_dNOC
_dBUF
_dUAB
_dD6H
_dOCLCQ
_dAU@
_dOCLCQ
_dU3W
016 7 _a016933093
_2Uk
016 7 _a016931165
_2Uk
019 _a899277447
_a902915217
020 _a9780081000038
_q(electronic bk.)
020 _a0081000030
_q(electronic bk.)
020 _z9780080999999
_q(hbk.)
020 _z0080999999
035 _a(OCoLC)894609039
_z(OCoLC)899277447
_z(OCoLC)902915217
050 4 _aQE538.5
072 7 _aSCI
_x030000
_2bisacsh
072 7 _aSCI
_x031000
_2bisacsh
082 0 4 _a551.22
_223
100 1 _aCarcione, Jos�e M.,
_eauthor.
245 1 0 _aWave fields in real media : wave propagation in anisotropic, anelastic, porous and electromagnetic media /
_h[electronic resource]
_cJos�e M. Carcione.
250 _a3rd ed.
264 1 _aAmsterdam :
_bElsevier Science,
_c2015.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aHandbook of geophysical exploration. Seismic exploration ;
_v38
500 _aPrevious edition: 2007.
504 _aIncludes bibliographical references and index.
588 0 _aCIP data; item not viewed.
505 0 _aFront Cover; Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media; Copyright; Contents; Dedication; Preface; About the Author; Basic Notation; Glossary of Main Symbols; Chapter 1: Anisotropic Elastic Media; 1.1 Strain-Energy Density and Stress-Strain Relation; 1.2 Dynamical Equations; 1.2.1 Symmetries and Transformation Properties; Symmetry Plane of a Monoclinic Medium; Transformation of the Stiffness Matrix; 1.3 Kelvin-Christoffel Equation, Phase Velocity and Slowness; 1.3.1 Transversely Isotropic Media.
505 8 _a1.3.2 Symmetry Planes of an Orthorhombic Medium1.3.3 Orthogonality of Polarizations; 1.4 Energy Balance and Energy Velocity; 1.4.1 Group Velocity; 1.4.2 Equivalence Between the Group and Energy Velocities; 1.4.3 Envelope Velocity; 1.4.4 Example: Transversely Isotropic Media; 1.4.5 Elasticity Constants from Phase and Group Velocities; 1.4.6 Relationship Between the Slowness and Wave Surfaces; SH-Wave Propagation; 1.5 Finely Layered Media; 1.5.1 The Schoenberg-Muir Averaging Theory; Examples; 1.6 Anomalous Polarizations; 1.6.1 Conditions for the Existence of Anomalous Polarization.
505 8 _a1.6.2 Stability Constraints1.6.3 Anomalous Polarization in Orthorhombic Media; 1.6.4 Anomalous Polarization in Monoclinic Media; 1.6.5 The Polarization; 1.6.6 Example; 1.7 The Best Isotropic Approximation; 1.8 Analytical Solutions; 1.8.1 2D Green Function; 1.8.2 3D Green Function; 1.9 Reflection and Transmission of Plane Waves; 1.9.1 Cross-Plane Shear Waves; Chapter 2: Viscoelasticity and Wave Propagation; 2.1 Energy Densities and Stress-Strain Relations; 2.1.1 Fading Memory and Symmetries of the Relaxation Tensor; 2.2 Stress-Strain Relation for 1D Viscoelastic Media.
505 8 _a2.2.1 Complex Modulus and Storage and Loss Moduli2.2.2 Energy and Significance of the Storage and Loss Moduli; 2.2.3 Non-negative Work Requirements and Other Conditions; 2.2.4 Consequences of Reality and Causality; 2.2.5 Summary of the Main Properties; Relaxation Function; Complex Modulus; 2.3 Wave Propagation in 1D Viscoelastic Media; 2.3.1 Wave Propagation for Complex Frequencies; 2.4 Mechanical Models and Wave Propagation; 2.4.1 Maxwell Model; 2.4.2 Kelvin-Voigt Model; 2.4.3 Zener or Standard Linear Solid Model; 2.4.4 Burgers Model; 2.4.5 Generalized Zener Model; Nearly Constant Q.
505 8 _a2.4.6 Nearly Constant-Q Model with a ContinuousSpectrum2.5 Constant-Q Model and Wave Equation; 2.5.1 Phase Velocity and Attenuation Factor; 2.5.2 Wave Equation in Differential Form: Fractional Derivatives; Propagation in Pierre Shale; 2.6 Equivalence Between Source and Initial Conditions; 2.7 Hysteresis Cycles and Fatigue; 2.8 Distributed-Order Fractional Time Derivatives; 2.8.1 The n Case; 2.8.2 The Generalized Dirac CombFunction; 2.9 The Concept ofCentrovelocity; 2.9.1 1D Green Function and Transient Solution; 2.9.2 Numerical Evaluation of the Velocities; 2.9.3 Example.
520 _aAuthored by the internationally renowned Jos�e M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave.
650 0 _aSeismic waves.
650 0 _aWave-motion, Theory of.
650 7 _aSCIENCE
_xEarth Sciences
_xGeography.
_2bisacsh
650 7 _aSCIENCE
_xEarth Sciences
_xGeology.
_2bisacsh
650 7 _aSeismic waves.
_2fast
_0(OCoLC)fst01111285
650 7 _aWave-motion, Theory of.
_2fast
_0(OCoLC)fst01172888
655 4 _aElectronic books.
776 0 8 _iPrint version:
_z9780080999999
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780080999999
999 _c246993
_d246993