000 | 05576cam a2200589Ma 4500 | ||
---|---|---|---|
001 | ocn894609039 | ||
003 | OCoLC | ||
005 | 20190328114809.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 141030s2015 ne ob 001 0 eng d | ||
040 |
_aUKMGB _beng _epn _cUKMGB _dOCLCO _dN$T _dEBLCP _dUIU _dYDXCP _dOCLCF _dDEBSZ _dOCLCQ _dNOC _dBUF _dUAB _dD6H _dOCLCQ _dAU@ _dOCLCQ _dU3W |
||
016 | 7 |
_a016933093 _2Uk |
|
016 | 7 |
_a016931165 _2Uk |
|
019 |
_a899277447 _a902915217 |
||
020 |
_a9780081000038 _q(electronic bk.) |
||
020 |
_a0081000030 _q(electronic bk.) |
||
020 |
_z9780080999999 _q(hbk.) |
||
020 | _z0080999999 | ||
035 |
_a(OCoLC)894609039 _z(OCoLC)899277447 _z(OCoLC)902915217 |
||
050 | 4 | _aQE538.5 | |
072 | 7 |
_aSCI _x030000 _2bisacsh |
|
072 | 7 |
_aSCI _x031000 _2bisacsh |
|
082 | 0 | 4 |
_a551.22 _223 |
100 | 1 |
_aCarcione, Jos�e M., _eauthor. |
|
245 | 1 | 0 |
_aWave fields in real media : wave propagation in anisotropic, anelastic, porous and electromagnetic media / _h[electronic resource] _cJos�e M. Carcione. |
250 | _a3rd ed. | ||
264 | 1 |
_aAmsterdam : _bElsevier Science, _c2015. |
|
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 0 |
_aHandbook of geophysical exploration. Seismic exploration ; _v38 |
|
500 | _aPrevious edition: 2007. | ||
504 | _aIncludes bibliographical references and index. | ||
588 | 0 | _aCIP data; item not viewed. | |
505 | 0 | _aFront Cover; Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media; Copyright; Contents; Dedication; Preface; About the Author; Basic Notation; Glossary of Main Symbols; Chapter 1: Anisotropic Elastic Media; 1.1 Strain-Energy Density and Stress-Strain Relation; 1.2 Dynamical Equations; 1.2.1 Symmetries and Transformation Properties; Symmetry Plane of a Monoclinic Medium; Transformation of the Stiffness Matrix; 1.3 Kelvin-Christoffel Equation, Phase Velocity and Slowness; 1.3.1 Transversely Isotropic Media. | |
505 | 8 | _a1.3.2 Symmetry Planes of an Orthorhombic Medium1.3.3 Orthogonality of Polarizations; 1.4 Energy Balance and Energy Velocity; 1.4.1 Group Velocity; 1.4.2 Equivalence Between the Group and Energy Velocities; 1.4.3 Envelope Velocity; 1.4.4 Example: Transversely Isotropic Media; 1.4.5 Elasticity Constants from Phase and Group Velocities; 1.4.6 Relationship Between the Slowness and Wave Surfaces; SH-Wave Propagation; 1.5 Finely Layered Media; 1.5.1 The Schoenberg-Muir Averaging Theory; Examples; 1.6 Anomalous Polarizations; 1.6.1 Conditions for the Existence of Anomalous Polarization. | |
505 | 8 | _a1.6.2 Stability Constraints1.6.3 Anomalous Polarization in Orthorhombic Media; 1.6.4 Anomalous Polarization in Monoclinic Media; 1.6.5 The Polarization; 1.6.6 Example; 1.7 The Best Isotropic Approximation; 1.8 Analytical Solutions; 1.8.1 2D Green Function; 1.8.2 3D Green Function; 1.9 Reflection and Transmission of Plane Waves; 1.9.1 Cross-Plane Shear Waves; Chapter 2: Viscoelasticity and Wave Propagation; 2.1 Energy Densities and Stress-Strain Relations; 2.1.1 Fading Memory and Symmetries of the Relaxation Tensor; 2.2 Stress-Strain Relation for 1D Viscoelastic Media. | |
505 | 8 | _a2.2.1 Complex Modulus and Storage and Loss Moduli2.2.2 Energy and Significance of the Storage and Loss Moduli; 2.2.3 Non-negative Work Requirements and Other Conditions; 2.2.4 Consequences of Reality and Causality; 2.2.5 Summary of the Main Properties; Relaxation Function; Complex Modulus; 2.3 Wave Propagation in 1D Viscoelastic Media; 2.3.1 Wave Propagation for Complex Frequencies; 2.4 Mechanical Models and Wave Propagation; 2.4.1 Maxwell Model; 2.4.2 Kelvin-Voigt Model; 2.4.3 Zener or Standard Linear Solid Model; 2.4.4 Burgers Model; 2.4.5 Generalized Zener Model; Nearly Constant Q. | |
505 | 8 | _a2.4.6 Nearly Constant-Q Model with a ContinuousSpectrum2.5 Constant-Q Model and Wave Equation; 2.5.1 Phase Velocity and Attenuation Factor; 2.5.2 Wave Equation in Differential Form: Fractional Derivatives; Propagation in Pierre Shale; 2.6 Equivalence Between Source and Initial Conditions; 2.7 Hysteresis Cycles and Fatigue; 2.8 Distributed-Order Fractional Time Derivatives; 2.8.1 The n Case; 2.8.2 The Generalized Dirac CombFunction; 2.9 The Concept ofCentrovelocity; 2.9.1 1D Green Function and Transient Solution; 2.9.2 Numerical Evaluation of the Velocities; 2.9.3 Example. | |
520 | _aAuthored by the internationally renowned Jos�e M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave. | ||
650 | 0 | _aSeismic waves. | |
650 | 0 | _aWave-motion, Theory of. | |
650 | 7 |
_aSCIENCE _xEarth Sciences _xGeography. _2bisacsh |
|
650 | 7 |
_aSCIENCE _xEarth Sciences _xGeology. _2bisacsh |
|
650 | 7 |
_aSeismic waves. _2fast _0(OCoLC)fst01111285 |
|
650 | 7 |
_aWave-motion, Theory of. _2fast _0(OCoLC)fst01172888 |
|
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _z9780080999999 |
856 | 4 | 0 |
_3ScienceDirect _uhttp://www.sciencedirect.com/science/book/9780080999999 |
999 |
_c246993 _d246993 |