000 | 02928cam a2200493Ii 4500 | ||
---|---|---|---|
001 | ocn896850630 | ||
003 | BD-DhUL | ||
005 | 20210621113420.0 | ||
006 | m o d | ||
007 | cr cn|---uuuuu | ||
008 | 140821s2011 ne a |b 001 0 eng | ||
015 |
_aGBB4C8028 _2bnb |
||
015 |
_aGBB4C5542 _2bnb |
||
015 |
_aGBB753606 _2bnb |
||
016 | 7 |
_a016941136 _2Uk |
|
016 | 7 |
_a016938650 _2Uk |
|
016 | 7 |
_a017990610 _2Uk |
|
020 | _z9780124058880 | ||
020 | _a9780124058880 (hbk) | ||
035 |
_a(OCoLC)896850630 _z(OCoLC)899277214 |
||
040 |
_aUKMGB _beng _erda _cUKMGB _dOCLCO _dTEFOD _dOPELS _dYDXCP _dGZM _dUIU _dOCLCF _dOPELS _dTPH _dTEFOD _dITD _dX#7 _dU3W _dD6H _dUKMGB _dOCLCO _dBD-DhUL |
||
050 | 4 | _aQA279.5 | |
082 | 0 | 4 |
_a519.542 _bKRD |
100 | 1 | _aKruschke, John K. | |
245 | 0 | 0 |
_aDoing Bayesian data analysis : _ba tutorial with R, JAGS, and Stan / _cJohn Kruschke. |
250 | _a2nd ed. | ||
264 | 1 |
_aAmsterdam : _bAcademic Press, _c2015. |
|
300 |
_axii, 759 p. : _bill. (some col.) ; _c24 cm. |
||
336 |
_atext _btxt _2rdacontent |
||
336 |
_astill image _bsti _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
365 |
_aUS$ _b89.99 |
||
500 | _aIncludes index. | ||
504 | _aBibliography : p. 737-745. | ||
505 | 0 | _aWhat's in this book (Read this first!) -- Part I The basics: models, probability, Bayes' rule and r: Introduction: credibility, models, and parameters; The R programming language; What is this stuff called probability?; Bayes' rule -- Part II All the fundamentals applied to inferring a binomila probability: Inferring a binomial probability via exact mathematical analysis; Markov chain Monte Carlo; JAGS; Hierarchical models; Model comparison and hierarchical modeling; Null hypothesis significance testing; Bayesian approaches to testing a point ("Null") hypothesis; Goals, power, and sample size; Stan -- Part III The generalized linear model: Overview of the generalized linear model; Metric-predicted variable on one or two groups; Metric predicted variable with one metric predictor; Metric predicted variable with multiple metric predictors; Metric predicted variable with one nominal predictor; Metric predicted variable with multiple nominal predictors; Dichotomous predicted variable; Nominal predicted variable; Ordinal predicted variable; Count predicted variable; Tools in the trunk -- Bibliography -- Index. | |
588 | _aDescription based on print version record. | ||
650 | 0 | _aBayesian statistical decision theory. | |
650 | 0 | _aR (Computer program language). | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: Kruschke, John K. _tDoing Bayesian data analysis. _bEdition 2. _dLondon, UK ; San Diego, CA : Academic Press, [2015] _z9780124058880 _w(DLC) 2014011293 _w(OCoLC)897342420 |
856 | 4 | 0 |
_3ScienceDirect _uhttp://www.sciencedirect.com/science/book/9780124058880 |
942 |
_2ddc _cBK |
||
999 |
_c247007 _d247007 |