000 02928cam a2200493Ii 4500
001 ocn896850630
003 BD-DhUL
005 20210621113420.0
006 m o d
007 cr cn|---uuuuu
008 140821s2011 ne a |b 001 0 eng
015 _aGBB4C8028
_2bnb
015 _aGBB4C5542
_2bnb
015 _aGBB753606
_2bnb
016 7 _a016941136
_2Uk
016 7 _a016938650
_2Uk
016 7 _a017990610
_2Uk
020 _z9780124058880
020 _a9780124058880 (hbk)
035 _a(OCoLC)896850630
_z(OCoLC)899277214
040 _aUKMGB
_beng
_erda
_cUKMGB
_dOCLCO
_dTEFOD
_dOPELS
_dYDXCP
_dGZM
_dUIU
_dOCLCF
_dOPELS
_dTPH
_dTEFOD
_dITD
_dX#7
_dU3W
_dD6H
_dUKMGB
_dOCLCO
_dBD-DhUL
050 4 _aQA279.5
082 0 4 _a519.542
_bKRD
100 1 _aKruschke, John K.
245 0 0 _aDoing Bayesian data analysis :
_ba tutorial with R, JAGS, and Stan /
_cJohn Kruschke.
250 _a2nd ed.
264 1 _aAmsterdam :
_bAcademic Press,
_c2015.
300 _axii, 759 p. :
_bill. (some col.) ;
_c24 cm.
336 _atext
_btxt
_2rdacontent
336 _astill image
_bsti
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
365 _aUS$
_b89.99
500 _aIncludes index.
504 _aBibliography : p. 737-745.
505 0 _aWhat's in this book (Read this first!) -- Part I The basics: models, probability, Bayes' rule and r: Introduction: credibility, models, and parameters; The R programming language; What is this stuff called probability?; Bayes' rule -- Part II All the fundamentals applied to inferring a binomila probability: Inferring a binomial probability via exact mathematical analysis; Markov chain Monte Carlo; JAGS; Hierarchical models; Model comparison and hierarchical modeling; Null hypothesis significance testing; Bayesian approaches to testing a point ("Null") hypothesis; Goals, power, and sample size; Stan -- Part III The generalized linear model: Overview of the generalized linear model; Metric-predicted variable on one or two groups; Metric predicted variable with one metric predictor; Metric predicted variable with multiple metric predictors; Metric predicted variable with one nominal predictor; Metric predicted variable with multiple nominal predictors; Dichotomous predicted variable; Nominal predicted variable; Ordinal predicted variable; Count predicted variable; Tools in the trunk -- Bibliography -- Index.
588 _aDescription based on print version record.
650 0 _aBayesian statistical decision theory.
650 0 _aR (Computer program language).
655 4 _aElectronic books.
776 0 8 _iPrint version: Kruschke, John K.
_tDoing Bayesian data analysis.
_bEdition 2.
_dLondon, UK ; San Diego, CA : Academic Press, [2015]
_z9780124058880
_w(DLC) 2014011293
_w(OCoLC)897342420
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780124058880
942 _2ddc
_cBK
999 _c247007
_d247007