000 | 02787cam a2200481Ia 4500 | ||
---|---|---|---|
001 | ocn898326414 | ||
003 | OCoLC | ||
005 | 20190328114809.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 141219t20142015ne o 000 0 eng d | ||
040 |
_aIDEBK _beng _epn _cIDEBK _dN$T _dEBLCP _dN$T _dOPELS _dOCLCF _dDEBSZ _dDEBBG _dOCLCQ _dMERUC _dOCLCQ _dU3W _dD6H _dOCLCQ _dCUY _dZCU _dICG _dDKC |
||
020 |
_a1322480850 _q(electronic bk.) |
||
020 |
_a9781322480855 _q(electronic bk.) |
||
020 |
_a9780128029466 _q(electronic bk.) |
||
020 |
_a0128029463 _q(electronic bk.) |
||
020 | _z9780128029275 | ||
035 | _a(OCoLC)898326414 | ||
050 | 4 | _aHV6773.15.P45 | |
072 | 7 |
_aSOC _x004000 _2bisacsh |
|
082 | 0 | 4 |
_a364.168 _223 |
100 | 1 |
_aAkanbi, Oluwatobi Ayodeji, _eauthor. |
|
245 | 1 | 2 |
_aA machine-learning approach to phishing detection and defense / _h[electronic resource] _cOluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi. |
260 |
_aAmsterdam : _bElsevier, _c2014 |
||
264 | 4 | _c�2015 | |
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
520 | _aPhishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats. | ||
504 | _aIncludes bibliographical references. | ||
650 | 0 | _aPhishing. | |
650 | 0 |
_aComputer networks _xSecurity measures. |
|
650 | 7 |
_aSOCIAL SCIENCE _xCriminology. _2bisacsh |
|
650 | 7 |
_aComputer networks _xSecurity measures. _2fast _0(OCoLC)fst00872341 |
|
650 | 7 |
_aPhishing. _2fast _0(OCoLC)fst01737436 |
|
655 | 4 | _aElectronic books. | |
655 | 7 |
_aElectronic books. _2lcgft |
|
700 | 1 |
_aAmiri, Iraj Sadegh, _d1977- _eauthor. |
|
700 | 1 |
_aFazeldehkordi, Elahe, _eauthor. |
|
776 | 0 | 8 |
_iErscheint auch als: _nDruck-Ausgabe _tAmiri, I.S.A Machine-Learning Approach to Phishing Detection and Defense |
856 | 4 | 0 |
_3ScienceDirect _uhttp://www.sciencedirect.com/science/book/9780128029275 |
999 |
_c247027 _d247027 |