000 02787cam a2200481Ia 4500
001 ocn898326414
003 OCoLC
005 20190328114809.0
006 m o d
007 cr |n|||||||||
008 141219t20142015ne o 000 0 eng d
040 _aIDEBK
_beng
_epn
_cIDEBK
_dN$T
_dEBLCP
_dN$T
_dOPELS
_dOCLCF
_dDEBSZ
_dDEBBG
_dOCLCQ
_dMERUC
_dOCLCQ
_dU3W
_dD6H
_dOCLCQ
_dCUY
_dZCU
_dICG
_dDKC
020 _a1322480850
_q(electronic bk.)
020 _a9781322480855
_q(electronic bk.)
020 _a9780128029466
_q(electronic bk.)
020 _a0128029463
_q(electronic bk.)
020 _z9780128029275
035 _a(OCoLC)898326414
050 4 _aHV6773.15.P45
072 7 _aSOC
_x004000
_2bisacsh
082 0 4 _a364.168
_223
100 1 _aAkanbi, Oluwatobi Ayodeji,
_eauthor.
245 1 2 _aA machine-learning approach to phishing detection and defense /
_h[electronic resource]
_cOluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi.
260 _aAmsterdam :
_bElsevier,
_c2014
264 4 _c�2015
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 _aPhishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats.
504 _aIncludes bibliographical references.
650 0 _aPhishing.
650 0 _aComputer networks
_xSecurity measures.
650 7 _aSOCIAL SCIENCE
_xCriminology.
_2bisacsh
650 7 _aComputer networks
_xSecurity measures.
_2fast
_0(OCoLC)fst00872341
650 7 _aPhishing.
_2fast
_0(OCoLC)fst01737436
655 4 _aElectronic books.
655 7 _aElectronic books.
_2lcgft
700 1 _aAmiri, Iraj Sadegh,
_d1977-
_eauthor.
700 1 _aFazeldehkordi, Elahe,
_eauthor.
776 0 8 _iErscheint auch als:
_nDruck-Ausgabe
_tAmiri, I.S.A Machine-Learning Approach to Phishing Detection and Defense
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780128029275
999 _c247027
_d247027