000 | 05931cam a2200649Ii 4500 | ||
---|---|---|---|
001 | ocn903489055 | ||
003 | OCoLC | ||
005 | 20190328114810.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 150216t20152015maua ob 001 0 eng d | ||
040 |
_aN$T _beng _erda _epn _cN$T _dN$T _dOPELS _dIDEBK _dOCLCF _dYDXCP _dTFW _dOCLCA _dTMC _dOCL _dAU@ _dOCLCO _dOCLCA _dUAB _dLIV _dOCLCQ _dOCLCO _dU3W _dOCLCO _dD6H _dCHVBK _dOCLCO _dCOO _dWYU _dOCLCO _dOCLCA _dDEBBG |
||
019 | _a956678831 | ||
020 |
_a9780128017432 _q(electronic bk.) |
||
020 |
_a0128017430 _q(electronic bk.) |
||
020 | _a133600892X | ||
020 | _a9781336008922 | ||
020 | _z9780128015384 | ||
020 | _z0128015381 (Trade Paper) | ||
020 | _a0128015381 | ||
020 | _a9780128015384 | ||
024 | 3 | _a9780128015384 | |
035 |
_a(OCoLC)903489055 _z(OCoLC)956678831 |
||
050 | 4 | _aTK5102.5 | |
072 | 7 |
_aTEC _x009070 _2bisacsh |
|
082 | 0 | 4 |
_a621.382 _223 |
245 | 0 | 0 |
_aBio-inspired computation in telecommunications / _h[electronic resource] _cedited by Xin-She Yang, Su Fong Chien, Tiew On Ting. |
264 | 1 |
_aWaltham, MA : _bElsevier Ltd., _c[2015] |
|
264 | 4 | _c�2015 | |
300 |
_a1 online resource : _billustrations |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
588 | 0 | _aOnline resource; title from PDF title page (EBSCO, viewed February 19, 2015). | |
505 | 0 | _aFront Cover; Bio-Inspired Computation in Telecommunications; Copyright ; Contents ; Preface ; List of Contributors ; Chapter 1: Bio-Inspired Computation and Optimization: An Overview; 1.1. Introduction; 1.2. Telecommunications and optimization; 1.3. Key challenges in optimization; 1.3.1. Infinite Monkey Theorem and Heuristicity; 1.3.2. Efficiency of an Algorithm; 1.3.3. How to Choose Algorithms; 1.3.4. Time Constraints; 1.4. Bio-inspired optimization algorithms; 1.4.1. SI-Based Algorithms; 1.4.1.1. Ant and bee algorithms; 1.4.1.2. Bat algorithm; 1.4.1.3. Particle swarm optimization. | |
505 | 8 | _a1.4.1.4. Firefly algorithm1.4.1.5. Cuckoo search; 1.4.2. Non-SI-Based Algorithms; 1.4.2.1. Simulated annealing; 1.4.2.2. Genetic algorithms; 1.4.2.3. Differential evolution; 1.4.2.4. Harmony search; 1.4.3. Other Algorithms; 1.5. Artificial neural networks; 1.5.1. Basic Idea; 1.5.2. Neural Networks; 1.5.3. Back Propagation Algorithm; 1.6. Support vector machine; 1.6.1. Linear SVM; 1.6.2. Kernel Tricks and Nonlinear SVM; 1.7. Conclusions; References; Chapter 2: Bio-Inspired Approaches in Telecommunications; 2.1. Introduction; 2.2. Design problems in telecommunications; 2.3. Green communications. | |
505 | 8 | _a2.3.1. Energy Consumption in Wireless Communications2.3.2. Metrics for Energy Efficiency; 2.3.3. Radio Resource Management; 2.3.4. Strategic Network Deployment; 2.4. Orthogonal frequency division multiplexing; 2.4.1. OFDM Systems; 2.4.2. Three-Step Procedure for Timing and Frequency Synchronization; 2.5. OFDMA model considering energy efficiency and quality-of-service; 2.5.1. Mathematical Formulation; 2.5.2. Results; 2.6. Conclusions; References; Chapter 3: Firefly Algorithm in Telecommunications; 3.1. Introduction; 3.2. Firefly algorithm; 3.2.1. Algorithm Complexity. | |
505 | 8 | _a3.2.2. Variants of Firefly Algorithm3.3. Traffic Characterization; 3.3.1. Network Management Based on Flow Analysis and Traffic Characterization; 3.3.2. Firefly Harmonic Clustering Algorithm; 3.3.3. Results; 3.4. Applications in wireless cooperative networks; 3.4.1. Related Work; 3.4.2. System Model and Problem Statement; 3.4.2.1. Energy and spectral efficiencies; 3.4.2.2. Problem statement; 3.4.3. Dinkelbach Method; 3.4.4. Firefly Algorithm; 3.4.5. Simulations and Numerical Results; 3.5. Concluding remarks; 3.5.1. FA in Traffic Characterization; 3.5.2. FA in Cooperative Networks; References. | |
505 | 8 | _aChapter 4: A Survey of Intrusion Detection Systems Using Evolutionary Computation4.1. Introduction; 4.2. Intrusion detection systems; 4.2.1. IDS Components; 4.2.2. Research Areas and Challenges in Intrusion Detection; 4.3. The method: evolutionary computation; 4.4. Evolutionary computation applications on intrusion detection; 4.4.1. Foundations; 4.4.2. Data Collection; 4.4.3. Detection Techniques and Response; 4.4.3.1. Intrusion detection on conventional networks; 4.4.3.2. Intrusion detection on wireless and resource-constrained networks; 4.4.4. IDS Architecture; 4.4.5. IDS Security. | |
520 | _aBio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students. | ||
650 | 0 | _aTelecommunication. | |
650 | 0 | _aNatural computation. | |
650 | 7 |
_aTECHNOLOGY & ENGINEERING _xMechanical. _2bisacsh |
|
650 | 7 |
_aNatural computation. _2fast _0(OCoLC)fst01745866 |
|
650 | 7 |
_aTelecommunication. _2fast _0(OCoLC)fst01145830 |
|
650 | 7 |
_aBusiness & Economics. _2hilcc |
|
650 | 7 |
_aTransportation Economics. _2hilcc |
|
650 | 1 | 2 |
_aComputational Biology. _0(DNLM)D019295 |
650 | 1 | 2 |
_aTelecommunications. _0(DNLM)D013685 |
655 | 4 | _aElectronic books. | |
700 | 1 |
_aYang, Xin-She, _eeditor. |
|
700 | 1 |
_aChien, Su Fong, _eeditor. |
|
700 | 1 |
_aTing, Tiew On, _eeditor. |
|
776 | 0 | 8 |
_iPrint version: _tBio-inspired computation in telecommunications. _dWaltham, MA : Elsevier Ltd., [2015] _w(DLC) 2014960051 |
856 | 4 | 0 |
_3ScienceDirect _uhttp://www.sciencedirect.com/science/book/9780128015384 |
999 |
_c247045 _d247045 |