000 07100cam a2200757Ii 4500
001 ocn906699032
003 OCoLC
005 20190328114810.0
006 m o d
007 cr cnu|||unuuu
008 150407s2015 ne a ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dIDEBK
_dOPELS
_dE7B
_dYDXCP
_dCOO
_dCDX
_dCHVBK
_dEBLCP
_dDEBSZ
_dFEM
_dOCLCO
_dIDB
_dZ5A
_dOCLCQ
_dMERUC
_dOCLCQ
_dWRM
_dU3W
_dD6H
_dOCLCF
_dRRP
_dOCLCQ
_dWYU
_dOCLCA
_dMERER
_dOCLCQ
019 _a908100768
_a926105501
_a968096815
_a1066538951
020 _a9780128016787
_q(electronic bk.)
020 _a0128016787
_q(electronic bk.)
020 _a0128013702
020 _a9780128013700
020 _z9780128013700
035 _a(OCoLC)906699032
_z(OCoLC)908100768
_z(OCoLC)926105501
_z(OCoLC)968096815
_z(OCoLC)1066538951
050 4 _aQH541.15.S72
070 0 _aQH541.15.S72
_bK67 2015
072 7 _aNAT
_x010000
_2bisacsh
072 7 _aNAT
_x045040
_2bisacsh
072 7 _aSCI
_x026000
_2bisacsh
072 7 _aSCI
_x020000
_2bisacsh
082 0 4 _a577.01/5195
_223
100 1 _aKorner-Nievergelt, Fr�anzi,
_eauthor.
245 1 0 _aBayesian data analysis in ecology using linear models with R, BUGS, and Stan /
_h[electronic resource]
_cFr�anzi Korner-Nievergelt [and five others].
264 1 _aAmsterdam ;
_aBoston :
_bAcademic Press, an imprint of Elsevier,
_c[2015]
300 _a1 online resource :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_2rda
588 0 _aOnline resource; title from PDF title page (Ebsco, viewed April 9, 2015).
504 _aIncludes bibliographical references and index.
520 _aBayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions-including all R codes-that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types.
505 0 _aFront Cover; Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan; Copyright; Contents; Digital Assets; Acknowledgments; Chapter 1 -- Why do we Need Statistical Models and What is this Book About?; 1.1 WHY WE NEED STATISTICAL MODELS; 1.2 WHAT THIS BOOK IS ABOUT; FURTHER READING; Chapter 2 -- Prerequisites and Vocabulary; 2.1 SOFTWARE; 2.2 IMPORTANT STATISTICAL TERMS AND HOW TO HANDLE THEM IN R; FURTHER READING; Chapter 3 -- The Bayesian and the Frequentist Ways of Analyzing Data; 3.1 SHORT HISTORICAL OVERVIEW; 3.2 THE BAYESIAN WAY; 3.3 THE FREQUENTIST WAY.
505 8 _a3.4 COMPARISON OF THE BAYESIAN AND THE FREQUENTIST WAYSFURTHER READING; Chapter 4 -- Normal Linear Models; 4.1 LINEAR REGRESSION; 4.2 REGRESSION VARIANTS: ANOVA, ANCOVA, AND MULTIPLE REGRESSION; FURTHER READING; Chapter 5 -- Likelihood; 5.1 THEORY; 5.2 THE MAXIMUM LIKELIHOOD METHOD; 5.3 THE LOG POINTWISE PREDICTIVE DENSITY; FURTHER READING; Chapter 6 -- Assessing Model Assumptions: Residual Analysis; 6.1 MODEL ASSUMPTIONS; 6.2 INDEPENDENT AND IDENTICALLY DISTRIBUTED; 6.3 THE QQ PLOT; 6.4 TEMPORAL AUTOCORRELATION; 6.5 SPATIAL AUTOCORRELATION; 6.6 HETEROSCEDASTICITY; FURTHER READING.
505 8 _aChapter 7 -- Linear Mixed Effects Models7.1 BACKGROUND; 7.2 FITTING A LINEAR MIXED MODEL IN R; 7.3 RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION; 7.4 ASSESSING MODEL ASSUMPTIONS; 7.5 DRAWING CONCLUSIONS; 7.6 FREQUENTIST RESULTS; 7.7 RANDOM INTERCEPT AND RANDOM SLOPE; 7.8 NESTED AND CROSSED RANDOM EFFECTS; 7.9 MODEL SELECTION IN MIXED MODELS; FURTHER READING; Chapter 8 -- Generalized Linear Models; 8.1 BACKGROUND; 8.2 BINOMIAL MODEL; 8.3 FITTING A BINARY LOGISTIC REGRESSION IN R; 8.4 POISSON MODEL; FURTHER READING; Chapter 9 -- Generalized Linear Mixed Models; 9.1 BINOMIAL MIXED MODEL.
505 8 _a9.2 POISSON MIXED MODELFURTHER READING; Chapter 10 -- Posterior Predictive Model Checking and Proportion of Explained Variance; 10.1 POSTERIOR PREDICTIVE MODEL CHECKING; 10.2 MEASURES OF EXPLAINED VARIANCE; FURTHER READING; Chapter 11 -- Model Selection and Multimodel Inference; 11.1 WHEN AND WHY WE SELECT MODELS AND WHY THIS IS DIFFICULT; 11.2 METHODS FOR MODEL SELECTION AND MODEL COMPARISONS; 11.3 MULTIMODEL INFERENCE; 11.4 WHICH METHOD TO CHOOSE AND WHICH STRATEGY TO FOLLOW; FURTHER READING; Chapter 12 -- Markov Chain Monte Carlo Simulation; 12.1 BACKGROUND; 12.2 MCMC USING BUGS.
505 8 _a12.3 MCMC USING STAN12.4 SIM, BUGS, AND STAN; FURTHER READING; Chapter 13 -- Modeling Spatial Data Using GLMM; 13.1 BACKGROUND; 13.2 MODELING ASSUMPTIONS; 13.3 EXPLICIT MODELING OF SPATIAL AUTOCORRELATION; FURTHER READING; Chapter 14 -- Advanced Ecological Models; 14.1 HIERARCHICAL MULTINOMIAL MODEL TO ANALYZE HABITAT SELECTION USING BUGS; 14.2 ZERO-INFLATED POISSON MIXED MODEL FOR ANALYZING BREEDING SUCCESS USING STAN; 14.3 OCCUPANCY MODEL TO MEASURE SPECIES DISTRIBUTION USING STAN; 14.4 TERRITORY OCCUPANCY MODEL TO ESTIMATE SURVIVAL USING BUGS.
630 0 0 _aBUGS (Information storage and retrieval system)
630 0 7 _aBUGS (Information storage and retrieval system)
_2fast
_0(OCoLC)fst01897696
650 0 _aEcology
_xResearch
_xStatistical methods.
650 0 _aBayesian statistical decision theory.
650 0 _aR (Computer program language)
650 7 _aNATURE
_xEcology.
_2bisacsh
650 7 _aNATURE
_xEcosystems & Habitats
_xWilderness.
_2bisacsh
650 7 _aSCIENCE
_xEnvironmental Science.
_2bisacsh
650 7 _aSCIENCE
_xLife Sciences
_xEcology.
_2bisacsh
650 7 _aBayesian statistical decision theory.
_2fast
_0(OCoLC)fst00829019
650 7 _aR (Computer program language)
_2fast
_0(OCoLC)fst01086207
650 7 _a�Okologie
_2gnd
_0(DE-588)4043207-5
650 7 _aDatenverarbeitung
_2gnd
_0(DE-588)4011152-0
650 7 _aBayes-Verfahren
_2gnd
_0(DE-588)4204326-8
650 7 _aBiostatistik
_2gnd
_0(DE-588)4729990-3
650 7 _aR
_gProgramm
_2gnd
_0(DE-588)4705956-4
650 7 _aGibbs-sampling
_2gnd
_0(DE-588)4352359-6
650 2 _aBayes Theorem.
650 2 _aLinear Models.
655 4 _aElectronic books.
655 0 _aElectronic book.
776 0 8 _iPrint version:
_tBayesian data analysis in ecology using linear models with R, BUGS, and Stan.
_dAmsterdam, [Netherlands] : Academic Press, �2015
_hxii, 316 pages
_z9780128013700
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780128013700
999 _c247071
_d247071