000 06165cam a2200577Ii 4500
001 ocn907924107
003 OCoLC
005 20190328114811.0
006 m o d
007 cr cnu|||unuuu
008 150423s2015 mau ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dIDEBK
_dOPELS
_dE7B
_dYDXCP
_dCDX
_dEBLCP
_dDEBSZ
_dTEFOD
_dOCLCF
_dB24X7
_dCOO
_dIDB
_dLIV
_dOCLCQ
_dMERUC
_dWRM
_dU3W
_dD6H
_dINT
_dOCLCQ
_dCUY
_dOCLCQ
_dICG
_dDKC
019 _a908074729
020 _a9780128006658
_q(electronic bk.)
020 _a012800665X
_q(electronic bk.)
020 _z9780128005378
035 _a(OCoLC)907924107
_z(OCoLC)908074729
050 4 _aZA4240
072 7 _aLAN
_x025000
_2bisacsh
082 0 4 _a025.04
_223
100 1 _aTalburt, John R.,
_eauthor.
245 1 0 _aEntity information life cycle for big data : master data management and information integration /
_h[electronic resource]
_cJohn R. Talburt, Yinle Zhou.
264 1 _aWaltham, MA :
_bElsevier :
_bMorgan Kaufmann,
_c2015
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aVendor-supplied metadata.
520 _aEntity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data's impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics.
505 0 _aFront Cover; Entity Information Life Cycle for Big Data; Copyright; Contents; Foreword; Preface; THE CHANGING LANDSCAPE OF INFORMATION QUALITY; MOTIVATION FOR THIS BOOK; AUDIENCE; ORGANIZATION OF THE MATERIAL; Acknowledgements; Chapter 1 -- The Value Proposition for MDM and Big Data; DEFINITION AND COMPONENTS OF MDM; THE BUSINESS CASE FOR MDM; DIMENSIONS OF MDM; THE CHALLENGE OF BIG DATA; MDM AND BIG DATA -- THE N-SQUARED PROBLEM; CONCLUDING REMARKS; Chapter 2 -- Entity Identity Information and the CSRUD Life Cycle Model; ENTITIES AND ENTITY REFERENCES; MANAGING ENTITY IDENTITY INFORMATION.
505 8 _aENTITY IDENTITY INFORMATION LIFE CYCLE MANAGEMENT MODELSCONCLUDING REMARKS; Chapter 3 -- A Deep Dive into the Capture Phase; AN OVERVIEW OF THE CAPTURE PHASE; BUILDING THE FOUNDATION; UNDERSTANDING THE DATA; DATA PREPARATION; SELECTING IDENTITY ATTRIBUTES; ASSESSING ER RESULTS; DATA MATCHING STRATEGIES; CONCLUDING REMARKS; Chapter 4 -- Store and Share -- Entity Identity Structures; ENTITY IDENTITY INFORMATION MANAGEMENT STRATEGIES; DEDICATED MDM SYSTEMS; THE IDENTITY KNOWLEDGE BASE; MDM ARCHITECTURES; CONCLUDING REMARKS; Chapter 5 -- Update and Dispose Phases -- Ongoing Data Stewardship.
505 8 _aDATA STEWARDSHIPTHE AUTOMATED UPDATE PROCESS; THE MANUAL UPDATE PROCESS; ASSERTED RESOLUTION; EIS VISUALIZATION TOOLS; MANAGING ENTITY IDENTIFIERS; CONCLUDING REMARKS; Chapter 6 -- Resolve and Retrieve Phase -- Identity Resolution; IDENTITY RESOLUTION; IDENTITY RESOLUTION ACCESS MODES; CONFIDENCE SCORES; CONCLUDING REMARKS; Chapter 7 -- Theoretical Foundations; THE FELLEGI-SUNTER THEORY OF RECORD LINKAGE; THE STANFORD ENTITY RESOLUTION FRAMEWORK; ENTITY IDENTITY INFORMATION MANAGEMENT; CONCLUDING REMARKS; Chapter 8 -- The Nuts and Bolts of Entity Resolution; THE ER CHECKLIST.
505 8 _aCLUSTER-TO-CLUSTER CLASSIFICATIONSELECTING AN APPROPRIATE ALGORITHM; CONCLUDING REMARKS; Chapter 9 -- Blocking; BLOCKING; BLOCKING BY MATCH KEY; DYNAMIC BLOCKING VERSUS PRERESOLUTION BLOCKING; BLOCKING PRECISION AND RECALL; MATCH KEY BLOCKING FOR BOOLEAN RULES; MATCH KEY BLOCKING FOR SCORING RULES; CONCLUDING REMARKS; Chapter 10 -- CSRUD for Big Data; LARGE-SCALE ER FOR MDM; THE TRANSITIVE CLOSURE PROBLEM; DISTRIBUTED, MULTIPLE-INDEX, RECORD-BASED RESOLUTION; AN ITERATIVE, NONRECURSIVE ALGORITHM FOR TRANSITIVE CLOSURE; ITERATION PHASE: SUCCESSIVE CLOSURE BY REFERENCE IDENTIFIER.
505 8 _aDEDUPLICATION PHASE: FINAL OUTPUT OF COMPONENTSER USING THE NULL RULE; THE CAPTURE PHASE AND IKB; THE IDENTITY UPDATE PROBLEM; PERSISTENT ENTITY IDENTIFIERS; THE LARGE COMPONENT AND BIG ENTITY PROBLEMS; IDENTITY CAPTURE AND UPDATE FOR ATTRIBUTE-BASED RESOLUTION; CONCLUDING REMARKS; Chapter 11 -- ISO Data Quality Standards for Master Data; BACKGROUND; GOALS AND SCOPE OF THE ISO 8000-110 STANDARD; FOUR MAJOR COMPONENTS OF THE ISO 8000-110 STANDARD; SIMPLE AND STRONG COMPLIANCE WITH ISO 8000-110; ISO 22745 INDUSTRIAL SYSTEMS AND INTEGRATION; BEYOND ISO 8000-110; CONCLUDING REMARKS.
505 8 _aAppendix A -- Some Commonly Used ER Comparators.
504 _aIncludes bibliographical references and index.
650 0 _aBig data.
650 0 _aSemantic Web.
650 0 _aPattern recognition systems.
650 0 _aData mining.
650 7 _aLANGUAGE ARTS & DISCIPLINES
_xLibrary & Information Science
_xGeneral.
_2bisacsh
650 7 _aBig data.
_2fast
_0(OCoLC)fst01892965
650 7 _aData mining.
_2fast
_0(OCoLC)fst00887946
650 7 _aPattern recognition systems.
_2fast
_0(OCoLC)fst01055266
650 7 _aSemantic Web.
_2fast
_0(OCoLC)fst01112076
655 4 _aElectronic books.
655 7 _aElectronic books.
_2lcgft
700 1 _aZhou, Yinle,
_d1986-
_eauthor.
776 0 8 _iPrint version:
_aTalburt, John R.
_tEntity Information Life Cycle for Big Data : Master Data Management and Information Integration.
_dBurlington : Elsevier Science, �2015
_z9780128005378
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780128005378
999 _c247075
_d247075