000 03979cam a2200577Ii 4500
001 ocn919317951
003 OCoLC
005 20190328114812.0
006 m o d
007 cr cnu|||unuuu
008 150828s2015 enk ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dYDXCP
_dN$T
_dIDEBK
_dCDX
_dOPELS
_dEBLCP
_dOCLCF
_dFEM
_dVGM
_dOCLCQ
_dMERUC
_dBUF
_dU3W
_dD6H
_dAU@
_dOCLCQ
_dWYU
_dTKN
019 _a968038279
_a969076076
020 _a9780081004654
_q(electronic bk.)
020 _a0081004656
_q(electronic bk.)
020 _z9781785480218
035 _a(OCoLC)919317951
_z(OCoLC)968038279
_z(OCoLC)969076076
050 4 _aTK5105.5
072 7 _aCOM
_x013000
_2bisacsh
072 7 _aCOM
_x014000
_2bisacsh
072 7 _aCOM
_x018000
_2bisacsh
072 7 _aCOM
_x067000
_2bisacsh
072 7 _aCOM
_x032000
_2bisacsh
072 7 _aCOM
_x037000
_2bisacsh
072 7 _aCOM
_x052000
_2bisacsh
082 0 4 _a004.6
_223
100 1 _aC�amara, Daniel,
_eauthor.
245 1 0 _aBio-Inspired Networking /
_h[electronic resource]
_cDaniel C�amara.
264 1 _aLondon :
_bISTE Press Ltd. ;
_aKidlington, Oxford :
_bElsevier Ltd.,
_c2015.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_2rda
588 0 _aVendor-supplied metadata.
504 _aIncludes bibliographical references and index.
520 _aBio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks.
505 0 _aMachine generated contents note: ch. 1 Evolution and Evolutionary Algorithms -- 1.1. Brief introduction to evolution -- 1.2. Mechanisms of evolution -- 1.2.1. DNA code -- 1.2.2. Mutation -- 1.2.3. Sexual reproduction and recombination -- 1.2.4. Natural selection -- 1.2.5. Genetic drift -- 1.3. Artificial evolution -- 1.3.1. The basic process -- 1.3.2. Limitations -- 1.4. Applications on networks -- 1.4.1.Network positioning -- 1.4.2. Routing -- 1.4.3. Other works -- 1.5. Further reading -- 1.6. Bibliography -- ch. 2 Chemical Computing -- 2.1. Artificial chemistry -- 2.2. Applications on networks -- 2.2.1. Data dissemination -- 2.2.2. Routing -- 2.3. Further reading -- 2.4. Bibliography -- ch. 3 Nervous System -- 3.1. Nervous system hierarchy -- 3.1.1. Central nervous system -- 3.1.2. Peripheral nervous system -- 3.2. The neuron -- 3.3. The neocortex -- 3.4. Speed and capacity -- 3.5. Artificial neural networks -- 3.5.1. The perceptron -- 3.5.2. Interconnecting perceptrons -- 3.5.3. Learning process.
505 0 _aNote continued: 3.5.4. The backpropagation algorithm -- 3.6. Applications on networks -- 3.6.1. ANN in intrusion detection systems -- 3.6.2. Fault detection -- 3.6.3. Routing -- 3.7. Further reading -- 3.8. Bibliography -- ch. 4 Swarm Intelligence (SI) -- 4.1. Ant colony optimization -- 4.2. Applications on networks -- 4.2.1. Ants colony on routing -- 4.2.2. Ants colony on intrusion detection -- 4.3. Particle swarm optimization -- 4.4. Applications on networks -- 4.4.1. Particle swarm on node positioning -- 4.4.2. Particle swarm on intrusion detection -- 4.5. Further reading -- 4.6. Bibliography.
650 0 _aComputer networks.
650 7 _aCOMPUTERS
_xComputer Literacy.
_2bisacsh
650 7 _aCOMPUTERS
_xComputer Science.
_2bisacsh
650 7 _aCOMPUTERS
_xData Processing.
_2bisacsh
650 7 _aCOMPUTERS
_xHardware
_xGeneral.
_2bisacsh
650 7 _aCOMPUTERS
_xInformation Technology.
_2bisacsh
650 7 _aCOMPUTERS
_xMachine Theory.
_2bisacsh
650 7 _aCOMPUTERS
_xReference.
_2bisacsh
650 7 _aComputer networks.
_2fast
_0(OCoLC)fst00872297
655 4 _aElectronic books.
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9781785480218
999 _c247148
_d247148