000 06016cam a2200625Ii 4500
001 ocn921301942
003 OCoLC
005 20190328114812.0
006 m o d
007 cr cnu|||unuuu
008 150917s2016 ne ob 000 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dYDXCP
_dOPELS
_dUMI
_dTEFOD
_dOCLCF
_dIDEBK
_dEBLCP
_dNLE
_dCOO
_dGGVRL
_dDEBSZ
_dLOA
_dVGM
_dOCLCQ
_dVT2
_dU3W
_dD6H
_dCEF
_dEZ9
_dOCLCQ
_dWYU
019 _a922704626
_a926045941
_a929521561
_a1066600477
020 _a9780128029145
_q(electronic bk.)
020 _a0128029145
_q(electronic bk.)
020 _z9780128028810
020 _z0128028815
035 _a(OCoLC)921301942
_z(OCoLC)922704626
_z(OCoLC)926045941
_z(OCoLC)929521561
_z(OCoLC)1066600477
050 4 _aQA76.9.Q36
072 7 _aCOM
_x000000
_2bisacsh
082 0 4 _a006.312
_223
100 1 _aTalia, Domenico,
_eauthor.
245 1 0 _aData analysis in the cloud : models, techniques and applications /
_h[electronic resource]
_cDomenico Talia, Paolo Trunfio, Fabrizio Marozzo.
264 1 _aAmsterdam, Netherlands :
_bElsevier Ltd.,
_c2016.
264 4 _c�2016
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aComputer Science Reviews and Trends
588 0 _aVendor-supplied metadata.
504 _aIncludes bibliographical references.
520 _aData Analysis in the Cloud introduces and discusses models, methods, techniques, and systems to analyze the large number of digital data sources available on the Internet using the computing and storage facilities of the cloud. Coverage includes scalable data mining and knowledge discovery techniques together with cloud computing concepts, models, and systems. Specific sections focus on map-reduce and NoSQL models. The book also includes techniques for conducting high-performance distributed analysis of large data on clouds. Finally, the book examines research trends such as Big Data pervasive computing, data-intensive exascale computing, and massive social network analysis.
505 0 _aCover; Title Page; Copyright Page; Dedication; Contents; Preface; Chapter 1 -- Introduction to Data Mining; 1.1 -- Data mining concepts ; 1.1.1 -- Classification ; 1.1.1.1 -- Decision Trees ; 1.1.1.2 -- Classification with kNN ; 1.1.2 -- Clustering ; 1.1.2.1 -- Bayesian Classification ; 1.1.2.2 -- The K-Means Algorithm ; 1.1.3 -- Association Rules ; 1.2 -- Parallel and distributed data mining ; 1.2.1 -- Parallel Classification ; 1.2.2 -- Parallel Clustering ; 1.2.3 -- Parallelism in Association Rules ; 1.2.4 -- Distributed Data Mining ; 1.2.4.1 -- Meta-Learning.
505 8 _a1.2.4.2 -- Collective Data Mining 1.2.4.3 -- Ensemble Learning ; 1.3 -- Summary ; References; Chapter 2 -- Introduction to Cloud Computing; 2.1 -- Cloud computing: definition, models, and architectures ; 2.1.1 -- Service Models ; 2.1.2 -- Deployment Models ; 2.1.3 -- Cloud Environments ; 2.1.3.1 -- Microsoft Azure ; 2.1.3.2 -- Amazon Web Services ; 2.1.3.3 -- OpenNebula ; 2.1.3.4 -- OpenStack ; 2.2 -- Cloud computing systems for data-intensive applications ; 2.2.1 -- Functional Requirements ; 2.2.1.1 -- Resource Management ; 2.2.1.2 -- Application Management.
505 8 _a2.2.2 -- Nonfunctional Requirements 2.2.2.1 -- User Requirements ; 2.2.2.2 -- Architecture Requirements ; 2.2.2.3 -- Infrastructure Requirements ; 2.2.3 -- Cloud Models for Distributed Data Analysis ; 2.3 -- Summary ; References ; Chapter 3 -- Models and Techniques for Cloud-Based Data Analysis; 3.1 -- MapReduce for data analysis ; 3.1.1 -- MapReduce Paradigm ; 3.1.2 -- MapReduce Frameworks ; 3.1.3 -- MapReduce Algorithms and Applications ; 3.2 -- Data analysis workflows ; 3.2.1 -- Workflow Programming ; 3.2.2 -- Workflow Management Systems ; 3.2.3 -- Workflow Management Systems for Clouds.
505 8 _a3.3 -- NoSQL models for data analytics 3.3.1 -- Key Features of NoSQL ; 3.3.2 -- Classification of NoSQL Databases ; 3.3.3 -- NoSQL Systems ; 3.3.3.1 -- Dynamo ; 3.3.3.2 -- MongoDB ; 3.3.3.3 -- Bigtable ; 3.3.4 -- Use Cases ; 3.4 -- Summary ; References ; Chapter 4 -- Designing and Supporting Scalable Data Analytics ; 4.1 -- Data analysis systems for clouds ; 4.1.1 -- Pegasus ; 4.1.2 -- Swift ; 4.1.3 -- Hunk ; 4.1.4 -- Sector/Sphere ; 4.1.5 -- BigML ; 4.1.6 -- Kognitio Analytical Platform ; 4.1.7 -- Mahout ; 4.1.8 -- Spark ; 4.1.9 -- Microsoft Azure Machine Learning ; 4.1.10 -- ClowdFlows.
505 8 _a4.2 -- How to design a scalable data analysis framework in clouds 4.2.1 -- Architecture and Execution Mechanisms ; 4.2.2 -- Implementation on Microsoft Azure ; 4.3 -- Programming workflow-based data analysis ; 4.3.1 -- VL4Cloud ; 4.3.2 -- JS4Cloud ; 4.3.3 -- Workflow Patterns in DMCF ; 4.3.3.1 -- Single Task ; 4.3.3.2 -- Pipeline ; 4.3.3.3 -- Data Partitioning ; 4.3.3.4 -- Data Aggregation ; 4.3.3.5 -- Parameter Sweeping ; 4.3.3.6 -- Input Sweeping ; 4.3.3.7 -- Tool Sweeping ; 4.3.3.8 -- Combination of Sweeping Patterns ; 4.4 -- Data analysis case studies.
505 8 _a4.4.1 -- Trajectory Mining Workflow Using VL4Cloud.
650 0 _aQuantitative research.
650 0 _aData mining.
650 0 _aCloud computing.
650 7 _aCOMPUTERS
_xGeneral.
_2bisacsh
650 7 _aCloud computing.
_2fast
_0(OCoLC)fst01745899
650 7 _aData mining.
_2fast
_0(OCoLC)fst00887946
650 7 _aQuantitative research.
_2fast
_0(OCoLC)fst01742283
655 4 _aElectronic books.
655 0 _aElectronic book.
700 1 _aTrunfio, Paolo,
_eauthor.
700 1 _aMarozzo, Fabrizio,
_eauthor.
776 0 8 _iPrint version:
_aTalia, Domenico.
_tData Analysis in the Cloud : Models, Techniques and Applications.
_d: Elsevier Science, �2015
_z9780128028810
830 0 _aComputer science reviews and trends.
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780128028810
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9780128028810
999 _c247167
_d247167