000 04261cam a2200505Ii 4500
001 ocn922324031
003 OCoLC
005 20190328114812.0
006 m o d
007 cr cnu|||unuuu
008 150928t20152016enk ob 000 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dOPELS
_dYDXCP
_dN$T
_dIDEBK
_dCDX
_dOCLCF
_dEBLCP
_dDEBSZ
_dOCLCQ
_dWRM
_dU3W
_dD6H
_dOCLCQ
_dZCU
019 _a929521692
020 _a9780128038253
_q(electronic bk.)
020 _a012803825X
_q(electronic bk.)
020 _z9780081006443
035 _a(OCoLC)922324031
_z(OCoLC)929521692
050 4 _aQA325
072 7 _aMAT
_x005000
_2bisacsh
072 7 _aMAT
_x034000
_2bisacsh
082 0 4 _a515/.33
_223
100 1 _aAtangana, Abdon,
_eauthor.
245 1 0 _aDerivative with a new parameter : theory, methods and applications /
_h[electronic resource]
_cAbdon Atangana.
264 1 _aLondon, UK :
_bAcademic Press is an imprint of Elsevier,
_c2015.
264 4 _c�2016
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references.
588 0 _aOnline resource; title from PDF title page (ScienceDirect, viewed September 29, 2015).
505 0 _aTitle page; Table of Contents; Copyright; Dedication; Preface; Acknowledgments; Chapter 1: History of derivatives from Newton to Caputo; Abstract; 1.1 Introduction; 1.2 Definition of local and fractional derivative; 1.3 Definitions and properties of their anti-derivatives; 1.4 Limitations and strength of local and fractional derivatives; 1.5 Classification of fractional derivatives; Chapter 2: Local derivative with new parameter; Abstract; 2.1 Motivation; 2.2 Definition and anti-derivative; 2.3 Properties of local derivative with new parameter.
505 8 _a2.4 Definition of partial derivative with new parameter2.5 Properties of partial beta-derivatives; Chapter 3: Novel integrals transform; Abstract; 3.1 Definition of some integral transform operators; 3.2 Definition and properties of the beta-Laplace transform; 3.3 Definition and properties of the beta-Sumudu transform; 3.4 Definition and properties of beta-Fourier transform; Chapter 4: Method for partial differential equations with beta-derivative; Abstract; 4.1 Introduction; 4.2 Homotopy decomposition method; 4.3 Variational iteration method; 4.4 Sumudu decomposition method.
505 8 _a4.5 Laplace decomposition method4.6 Extension of match asymptotic method to fractional boundary layers problems; 4.7 Numerical method; 4.8 Generalized stationarity with a new parameter; Chapter 5: Applications of local derivative with new parameter; Abstract; 5.1 Introduction; 5.2 Model of groundwater flow within the confined aquifer; 5.3 Steady-state solutions of the flow in a confined and unconfined aquifer; 5.4 Model of groundwater flow equation within a leaky aquifer; 5.5 Model of Lassa fever or Lassa hemorrhagic fever; 5.6 Model of Ebola hemorrhagic fever; Bibliography.
520 8 _aAnnotation
_bThis text starts off by giving a history of derivatives, from Newton to Caputo. It then goes on to introduce the new parameters for the local derivative, including its definition and properties. Additional topics define beta-Laplace transforms, beta-Sumudu transforms and beta-Fourier transforms, including their properties, and then go on to describe the method for partial differential with the beta derivatives. Subsequent sections give examples on how local derivatives with a new parameter can be used to model different applications, such as groundwater flow and different diseases.
650 0 _aDerivatives (Mathematics)
650 0 _aDifferential calculus.
650 7 _aMATHEMATICS
_xCalculus.
_2bisacsh
650 7 _aMATHEMATICS
_xMathematical Analysis.
_2bisacsh
650 7 _aDerivatives (Mathematics)
_2fast
_0(OCoLC)fst01893449
650 7 _aDifferential calculus.
_2fast
_0(OCoLC)fst00893441
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aAtangana, Abdon.
_tDerivative with a New Parameter : Theory, Methods and Applications.
_d: Elsevier Science, �2015
_z9780081006443
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780081006443
999 _c247173
_d247173