000 05211cam a2200553Ii 4500
001 ocn927103680
003 OCoLC
005 20190328114813.0
006 m o d
007 cr cnu|||unuuu
008 151028t20162016ne a ob 000 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dYDXCP
_dCDX
_dOCLCF
_dUMI
_dOPELS
_dCOO
_dDEBBG
_dVT2
_dVGM
_dNRC
_dU3W
_dD6H
_dCEF
_dOCLCQ
_dAU@
_dWYU
_dTKN
_dOCLCQ
019 _a932322886
_a988674515
_a1008944558
_a1066572101
020 _a9780128027714
_q(electronic bk.)
020 _a0128027711
_q(electronic bk.)
020 _a0128027673
020 _a9780128027677
020 _z9780128027677
035 _a(OCoLC)927103680
_z(OCoLC)932322886
_z(OCoLC)988674515
_z(OCoLC)1008944558
_z(OCoLC)1066572101
050 4 _aQA274.7
072 7 _aMAT
_x003000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
082 0 4 _a519.2/33
_223
100 1 _aYu, Shun-Zheng,
_eauthor.
245 1 0 _aHidden Semi-Markov models : theory, algorithms and applications /
_h[electronic resource]
_cShun-Zheng Yu.
264 4 _c�2016
264 1 _aAmsterdam, Netherlands :
_bElsevier,
_c2016.
300 _a1 online resource :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aComputer science reviews and trends
504 _aIncludes bibliographical references.
588 0 _aOnline resource; title from PDF title page (EBSCO, viewed October 29, 2015).
520 _aHidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science.
505 0 _aMachine generated contents note: ch. 1 Introduction -- 1.1. Markov Renewal Process and Semi-Markov Process -- 1.2. Hidden Markov Models -- 1.3. Dynamic Bayesian Networks -- 1.4. Conditional Random Fields -- 1.5. Hidden Semi-Markov Models -- 1.6. History of Hidden Semi-Markov Models -- ch. 2 General Hidden Semi-Markov Model -- 2.1.A General Definition of HSMM -- 2.2. Forward -- Backward Algorithm for HSMM -- 2.3. Matrix Expression of the Forward -- Backward Algorithm -- 2.4. Forward-Only Algorithm for HSMM -- 2.5. Viterbi Algorithm for HSMM -- 2.6. Constrained-Path Algorithm for HSMM -- ch. 3 Parameter Estimation of General HSMM -- 3.1. EM Algorithm and Maximum-Likelihood Estimation -- 3.2. Re-estimation Algorithms of Model Parameters -- 3.3. Order Estimation of HSMM -- 3.4. Online Update of Model Parameters -- ch. 4 Implementation of HSMM Algorithms -- 4.1. Heuristic Scaling -- 4.2. Posterior Notation -- 4.3. Logarithmic Form -- 4.4. Practical Issues in Implementation -- ch. 5 Conventional HSMMs.
505 0 _aNote continued: 5.1. Explicit Duration HSMM -- 5.2. Variable Transition HSMM -- 5.3. Variable-Transition and Explicit-Duration Combined HSMM -- 5.4. Residual Time HSMM -- ch. 6 Various Duration Distributions -- 6.1. Exponential Family Distribution of Duration -- 6.2. Discrete Coxian Distribution of Duration -- 6.3. Duration Distributions for Viterbi HSMM Algorithms -- ch. 7 Various Observation Distributions -- 7.1. Typical Parametric Distributions of Observations -- 7.2.A Mixture of Distributions of Observations -- 7.3. Multispace Probability Distributions -- 7.4. Segmental Model -- 7.5. Event Sequence Model -- ch. 8 Variants of HSMMs -- 8.1. Switching HSMM -- 8.2. Adaptive Factor HSMM -- 8.3. Context-Dependent HSMM -- 8.4. Multichannel HSMM -- 8.5. Signal Model of HSMM -- 8.6. Infinite HSMM and HDP-HSMM -- 8.7. HSMM Versus HMM -- ch. 9 Applications of HSMMs -- 9.1. Speech Synthesis -- 9.2. Human Activity Recognition -- 9.3.Network Traffic Characterization and Anomaly Detection.
650 0 _aMarkov processes.
650 0 _aRenewal theory.
650 7 _aMATHEMATICS
_xApplied.
_2bisacsh
650 7 _aMATHEMATICS
_xProbability & Statistics
_xGeneral.
_2bisacsh
650 7 _aMarkov processes.
_2fast
_0(OCoLC)fst01010347
650 7 _aRenewal theory.
_2fast
_0(OCoLC)fst01094620
655 4 _aElectronic books.
655 0 _aElectronic book.
776 0 8 _iPrint version:
_aYu, Shun-Zheng.
_tHidden semi-markov models : theory, algorithms and applications.
_dAmsterdam, [Netherlands] : Elsevier, �2016
_hix, 195 pages
_kComputer science reviews and trends.
_z9780128027677
830 0 _aComputer science reviews and trends.
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780128027677
999 _c247201
_d247201