000 | 04068cam a2200589Ii 4500 | ||
---|---|---|---|
001 | ocn930600936 | ||
003 | OCoLC | ||
005 | 20190328114813.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 151130s2016 ne ob 001 0 eng d | ||
040 |
_aN$T _beng _erda _epn _cN$T _dN$T _dYDXCP _dOCLCF _dEBLCP _dOPELS _dIDEBK _dDEBSZ _dIDB _dVGM _dOCLCQ _dU3W _dMERUC _dD6H _dOCLCQ _dCUY _dLOA _dZCU _dICG _dCOCUF _dDKC |
||
019 |
_a931157416 _a932332611 |
||
020 |
_a9780128046692 _q(electronic bk.) |
||
020 |
_a0128046694 _q(electronic bk.) |
||
020 | _z9780128046289 | ||
020 | _z0128046287 | ||
035 |
_a(OCoLC)930600936 _z(OCoLC)931157416 _z(OCoLC)932332611 |
||
050 | 4 | _aQC20.7.D5 | |
072 | 7 |
_aSCI _x024000 _2bisacsh |
|
072 | 7 |
_aSCI _x041000 _2bisacsh |
|
072 | 7 |
_aSCI _x055000 _2bisacsh |
|
082 | 0 | 4 |
_a530.15/5355 _223 |
100 | 1 |
_aJangveladze, Temur, _eauthor. |
|
245 | 1 | 0 |
_aNumerical solutions of three classes of nonlinear parabolic integro-differential equations / _h[electronic resource] _cTemur Jangveladze, Zurab Kiguradze, Beny Neta. |
264 | 1 |
_aAmsterdam : _bElsevier, _c2016. |
|
264 | 4 | _c�2016 | |
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
588 | 0 | _aOnline resource; title from PDF title page (EBSCO, viewed December 3, 2015). | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aTitle page; Table of Contents; Copyright; Preface; Acknowledgments; Abstract; Chapter 1: Introduction; Abstract; 1.1 Comments and bibliographical notes; Chapter 2: Mathematical Modeling; Abstract; 2.1 Electromagnetic diffusion process; 2.2 On the averaged Model II; 2.3 Mathematical Model III; 2.4 Some features of Models I and II; 2.5 Some features of Model III; 2.6 Comments and bibliographical notes; 2.2 On the averaged Model II; 2.3 Mathematical Model III; 2.5 Some features of Model III; Chapter 3: Approximate Solutions of the Integro-Differential Models; Abstract. | |
505 | 8 | _a3.1 Semi-discrete scheme for Model I3.2 Finite difference scheme for Model I; 3.3 Semi-discrete scheme for Model II; 3.4 Finite difference scheme for Model II; 3.5 Discrete analogues of Model III; 3.6 Galerkin's method for Model I; 3.7 Galerkin's method for Model II; 3.8 Galerkin's method for Model III; 3.9 Comments and bibliographical notes; 3.1 Semi-discrete scheme for Model I; 3.2 Finite difference scheme for Model I; 3.3 Semi-discrete scheme for Model II; 3.4 Finite difference scheme for Model II; 3.5 Deserete analogues of Model III; 3.6 Galerkin's method for Model I. | |
505 | 8 | _a3.7 Galerkin's method for Model II3.8 Galerkin's method for Model III; Chapter 4: Numerical Realization of the Discrete Analogous for Models I-III; Abstract; 4.1 Finite difference solution of Model I; 4.2 Finite difference solution of Model II; 4.3 Galerkin's solution of Model II; 4.4 Finite difference solution of Model III; 4.5 Comments and bibliographical notes; 4.1 Numerical solution of Model I; 4.2 Numerical solution of Model II; 4.3 Numerical solution of Model III; Bibliography; Index. | |
650 | 0 | _aDifferential equations, Nonlinear. | |
650 | 0 | _aNonlinear theories. | |
650 | 0 | _aMathematical physics. | |
650 | 7 |
_aSCIENCE _xEnergy. _2bisacsh |
|
650 | 7 |
_aSCIENCE _xMechanics _xGeneral. _2bisacsh |
|
650 | 7 |
_aSCIENCE _xPhysics _xGeneral. _2bisacsh |
|
650 | 7 |
_aDifferential equations, Nonlinear. _2fast _0(OCoLC)fst00893474 |
|
650 | 7 |
_aMathematical physics. _2fast _0(OCoLC)fst01012104 |
|
650 | 7 |
_aNonlinear theories. _2fast _0(OCoLC)fst01038812 |
|
655 | 4 | _aElectronic books. | |
655 | 7 |
_aElectronic books. _2lcgft |
|
700 | 1 |
_aKiguradze, Zurab, _eauthor. |
|
700 | 1 |
_aNeta, Beny, _eauthor. |
|
776 | 0 | 8 |
_iPrint version: _aJangveladze, Temur. _tNumerical solutions of three classes of nonlinear parabolic integro-differential equations. _dAmsterdam : Elsevier, [2016] _z9780128046289 _z0128046287 _w(OCoLC)922911116 |
856 | 4 | 0 |
_3ScienceDirect _uhttp://www.sciencedirect.com/science/book/9780128046289 |
999 |
_c247233 _d247233 |