000 05292cam a2200565Mi 4500
001 ocn932063208
003 OCoLC
005 20190328114813.0
006 m o d
007 cr |||||||||||
008 150812s2015 ne o 000 0 eng d
040 _aNLE
_beng
_erda
_epn
_cNLE
_dOCLCO
_dOCLCQ
_dOCLCF
_dEBLCP
_dOPELS
_dU3W
_dD6H
_dOCLCQ
_dWYU
_dCUY
_dZCU
_dMERUC
_dICG
_dVT2
_dDKC
019 _a932332309
020 _a9780081005958
_q(electronic bk.)
020 _a0081005954
_q(electronic bk.)
020 _z9780081005941
_q(hbk.)
020 _a0081005946
_q(Trade Cloth)
020 _a9780081005941
024 3 _a9780081005941
035 _a(OCoLC)932063208
_z(OCoLC)932332309
050 4 _aQA276
082 0 4 _a001.422
_223
100 1 _aSingh, Sarjinder,
_d1963-
_eauthor.
245 1 2 _aA new concept for tuning design weights in survey sampling : jackknifing in theory and practice /
_h[electronic resource]
_cSarjinder Singh, Stephen Sedory, Maria Rueda, Antonio Arcos, Raghunath Arnab.
264 1 _aAmsterdam :
_bAcademic Press,
_c2015.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aCIP data; item not viewed.
505 0 _aFront Cover; A New Concept for Tuning Design Weights in Survey Sampling: Jackknifing in Theory and Practice; Copyright; Dedication; Contents; Preface; Further studies; Acknowledgments; Chapter 1: Problem of estimation; 1.1. Introduction; 1.2. Estimation problem and notation; 1.3. Modeling of jumbo pumpkins; 1.3.1. R code; 1.4. The concept of jackknifing; 1.5. Jackknifing the sample mean; 1.6. Doubly jackknifed sample mean; 1.7. Jackknifing a sample proportion; 1.8. Jackknifing of a double suffix variable sum; 1.9. Frequently asked questions; 1.10. Exercises.
505 8 _aChapter 2: Tuning of jackknife estimator2.1. Introduction; 2.2. Notation; 2.3. Tuning with a chi-square type distance function; 2.3.1. Problem of undercoverage; 2.3.2. Estimation of variance and coverage; 2.3.3. R code; 2.3.4. Remark on tuning with a chi-square distance; 2.3.5. Numerical illustration; 2.3.6. R code used for illustration; 2.3.7. Problem of negative weights; 2.4. Tuning with dell function; 2.4.1. Estimation of variance and coverage; 2.4.2. R code; 2.4.3. Numerical illustration; 2.4.4. R code used for illustration; 2.5. An important remark; 2.6. Exercises.
505 8 _aChapter 3: Model assisted tuning of estimators3.1. Introduction; 3.2. Model assisted tuning with a chi-square distance function; 3.2.1. Estimation of variance and coverage; 3.2.2. R code; 3.3. Model assisted tuning with a dual-to-empirical log-likelihood (dell) function; 3.3.1. Estimation of variance and coverage; 3.3.2. R code; 3.4. Exercises; Chapter 4: Tuned estimators of finite population variance; 4.1. Introduction; 4.2. Tuned estimator of finite population variance; 4.3. Tuning with a chi-square distance; 4.3.1. Estimation of variance of the estimator of variance and coverage.
505 8 _a4.3.2. R code4.3.3. Remark on tuning with a chi-square distance; 4.3.4. Numerical illustration; 4.3.5. R code used for illustration; 4.3.6. F-distribution; 4.4. Tuning of estimator of finite population variance with a dual-to-empirical log-likelihood (dell) function; 4.4.1. Estimation of variance and coverage; 4.4.2. R code; 4.4.3. Numerical illustration; 4.4.4. R code used for illustration; 4.5. Alternative tuning with a chi-square distance; 4.5.1. Estimation of variance and coverage; 4.5.2. R code; 4.5.3. Numerical illustration; 4.5.4. R code used for illustration.
505 8 _a4.6. Alternative tuning with a dell function4.6.1. Estimation of variance and coverage; 4.6.2. R code; 4.6.3. Numerical illustration; 4.6.4. R code used for illustration; 4.7. Exercises; Chapter 5: Tuned estimators of correlation coefficient; 5.1. Introduction; 5.2. Correlation coefficient; 5.3. Tuned estimator of correlation coefficient; 5.3.1. Estimation of variance of the estimator of correlation coefficient and coverage; 5.3.2. R code; 5.3.3. Numerical illustration; 5.3.4. R code used for illustration; 5.4. Exercises; Chapter 6: Tuning of multicharacter survey estimators.
520 _aA New Concept for Tuning Design Weights in Survey Sampling: Jackknifing in Theory and Practice introduces the new concept of tuning design weights in survey sampling by presenting three concepts: calibration, jackknifing, and imputing where needed. This new methodology allows survey statisticians to develop statistical software for analyzing data in a more precisely and friendly way than with existing techniques.
504 _aIncludes bibliographical references and indexes.
650 0 _aSampling (Statistics)
650 7 _aSampling (Statistics)
_2fast
_0(OCoLC)fst01104676
650 4 _aSampling (Statistics)
650 4 _aMathematics
_xProbability & Statistics
_xGeneral.
655 4 _aElectronic books.
655 7 _aElectronic books.
_2lcgft
700 1 _aSedory, Stephen,
_eauthor.
700 1 _aRueda, Maria,
_eauthor.
700 1 _aArcos, Antonio,
_eauthor.
700 1 _aArnab, Raghunath,
_eauthor.
776 0 8 _iPrint version:
_z9780081005941
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780081005941
999 _c247254
_d247254