000 03882cam a2200649Ii 4500
001 on1012400060
003 OCoLC
005 20190328114817.0
006 m o d
007 cr cnu|||unuuu
008 171120s2017 enk ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dIDEBK
_dEBLCP
_dYDX
_dOPELS
_dUAB
_dD6H
_dSNK
_dOCLCF
_dOCLCQ
_dEZ9
_dCOD
_dOCLCQ
_dU3W
_dLVT
_dMERER
_dOCLCQ
020 _a9780081011706
_q(electronic bk.)
020 _a0081011709
_q(electronic bk.)
020 _z9781785481123
035 _a(OCoLC)1012400060
050 4 _aQA76.9.C62
072 7 _aCOM
_x013000
_2bisacsh
072 7 _aCOM
_x014000
_2bisacsh
072 7 _aCOM
_x018000
_2bisacsh
072 7 _aCOM
_x067000
_2bisacsh
072 7 _aCOM
_x032000
_2bisacsh
072 7 _aCOM
_x037000
_2bisacsh
072 7 _aCOM
_x052000
_2bisacsh
072 7 _aMAT
_x008000
_2bisacsh
082 0 4 _a004.01/51
_223
100 1 _aBoldo, Sylvie,
_eauthor.
245 1 0 _aComputer arithmetic and formal proofs : verifying floating-point algorithms with the Coq system /
_h[electronic resource]
_cSylvie Boldo, Guillaume Melquiond.
264 1 _aLondon :
_bISTE Press ;
_aOxford, UK :
_bElsevier,
_c2017.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _aFloating-point arithmetic is ubiquitous in modern computing, as it is the tool of choice to approximate real numbers. Due to its limited range and precision, its use can become quite involved and potentially lead to numerous failures. One way to greatly increase confidence in floating-point software is by computer-assisted verification of its correctness proofs. This book provides a comprehensive view of how to formally specify and verify tricky floating-point algorithms with the Coq proof assistant. It describes the Flocq formalization of floating-point arithmetic and some methods to automate theorem proofs. It then presents the specification and verification of various algorithms, from error-free transformations to a numerical scheme for a partial differential equation. The examples cover not only mathematical algorithms but also C programs as well as issues related to compilation. Describes the notions of specification and weakest precondition computation and their practical useShows how to tackle algorithms that extend beyond the realm of simple floating-point arithmeticIncludes real analysis and a case study about numerical analysis.
588 0 _aVendor-supplied metadata.
630 0 0 _aCoq (Electronic resource)
650 0 _aComputer arithmetic.
650 0 _aFloating-point arithmetic.
650 0 _aComputer algorithms.
650 7 _aCOMPUTERS
_xComputer Literacy.
_2bisacsh
650 7 _aCOMPUTERS
_xComputer Science.
_2bisacsh
650 7 _aCOMPUTERS
_xData Processing.
_2bisacsh
650 7 _aCOMPUTERS
_xHardware
_xGeneral.
_2bisacsh
650 7 _aCOMPUTERS
_xInformation Technology.
_2bisacsh
650 7 _aCOMPUTERS
_xMachine Theory.
_2bisacsh
650 7 _aCOMPUTERS
_xReference.
_2bisacsh
650 7 _aMATHEMATICS
_xDiscrete Mathematics.
_2bisacsh
650 7 _aComputer algorithms.
_2fast
_0(OCoLC)fst00872010
650 7 _aComputer arithmetic.
_2fast
_0(OCoLC)fst00872029
650 7 _aFloating-point arithmetic.
_2fast
_0(OCoLC)fst00927429
655 4 _aElectronic books.
700 1 _aMelquiond, Guillaume,
_eauthor.
776 0 8 _iPrint version:
_aBoldo, Sylvie.
_tComputer arithmetic and formal proofs : verifying floating-point algorithms with the Coq system.
_dLondon, England ; ISTE Press : Elsevier, �2017
_hxx, 306 pages
_z9781785481123
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9781785481123
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9781785481123
999 _c247492
_d247492