000 03424cam a22003617a 4500
001 17047449
003 BD-DhUL
005 20140901160843.0
008 111116s2011 njua 001 0 eng d
010 _a 2011905203
016 7 _a015785759
_2Uk
020 _a9781118068755 (pbk.)
020 _a1118068750 (pbk.)
035 _a(OCoLC)ocn696096679
040 _aBTCTA
_beng
_cBTCTA
_dBKL
_dILC
_dLKRBL
_dUKMGB
_dABG
_dDLC
_dBD-DhUL
042 _alccopycat
050 0 0 _aQA459
_b.R888 2011
082 0 4 _a516
_222
_bRYG
100 1 _aRyan, Mark,
_d1955-
245 1 0 _aGeometry essentials for dummies /
_c Mark Ryan.
260 _aHoboken, NJ :
_bWiley Pub.,
_cc2011.
300 _axii, 180 p. :
_bill. ;
_c22 cm.
365 _aUS$
_b8.96
490 1 _a--For dummies
500 _aIncludes index.
505 0 _aAn overview of geometry. The geometry of shapes ; Geometry proofs ; Am I ever going to use this? ; Getting down with definitions ; Lines, segments, and rays ; Investigating the plane facts ; Everybody's got an angle ; Bisection and trisection -- Geometry proof starter kit. The lay of the (proof) land ; Reasoning with If-Then logic ; Complementary and supplementary angles ; Addition and subtractions ; Like multiples and like divisions ; Congruent vertical angles ; Transitivity and substitution -- Tackling a longer proof. Making a game plan ; Using all the givens ; Using If-Then logic ; Chipping away at the problem ; Working backward ; Filling in the gaps ; Writing out the finished proof -- Triangle fundamentals. Taking in a triangle's sides ; Triangle classification by angles ; The Triangle Inequality Principle ; Sizing up triangle area ; Regarding right triangles ; The Pythagorean Theorem ; Pythagorean triple triangles ; Two special right triangles -- Congruent triangle proofs. Proving triangles congruent ; Taking the next step with CPCTC ; The Isosceles Triangle Theorems ; The two equidistance theorems -- Quadrilaterals. Parallel line properties ; The seven special quadrilaterals ; Working with auxiliary lines ; The properties of quadrilaterals ; Proving that you've got a particular quadrilateral -- Polygon formulas. The areas of quadrilaterals ; The area of regular polygons ; Angle and diagonal formulas -- Similarity. Similar figures ; Proving triangles similar ; Splitting right triangles with the Altitude-on-Hypotenuse Theorem ; More proportionality theorems -- Circle basics. Radii, chords, and diameters ; Arcs and central angles ; Tangents ; The pizza slice formulas ; The angle-arc formulas ; The power theorems -- 3-D geometry. Flat-top figures ; Pointy-top figures ; Spheres -- Coordinate geometry. The coordinate plane ; Slope, distance, and midpoint ; Equations for lines and circles -- Ten big reasons to use in proofs. The reflexive property ; Vertical angles are congruent ; The parallel-line theorems ; Two points determine a line ; All radii are congruent ; If sides, then angles ; If angles, then sides ; Triangle congruence ; CPCTC ; Triangle similarity.
520 _aA practical guide to the critical concepts taught in a typical geometry course. Provides the basics you need to score high in geometry, or for parents helping kids study for exams.
650 0 _aGeometry.
830 0 _a--For dummies.
906 _a7
_bcbc
_ccopycat
_d2
_eepcn
_f20
_gy-gencatlg
942 _2ddc
_cBK
955 _bxh58 2011-11-16 z-processor
_ixh58 2011-11-16 ; to Dewey 2011-11-16
999 _c7022
_d7022