000 | 02673mam a2200325 a 4500 | ||
---|---|---|---|
001 | 1693632 | ||
003 | BD-DhUL | ||
005 | 20140907150128.0 | ||
008 | 951003s1995 enka 000 0 eng d | ||
020 | _a0412039915 | ||
035 | _a(OCoLC)ocm33233097 | ||
040 |
_aEUN _cEUN _dNNC _dOrLoB _dBD-DhUL |
||
082 |
_a519.2 _bBAY |
||
245 | 0 | 0 |
_aBayesian data analysis / _cAndrew Gelman ... [et al.] |
260 |
_aLondon ; _aNew York : _bChapman & Hall, _cc1995. |
||
300 |
_axix, 526 p. : _bill. ; _c24 cm. |
||
365 |
_aUSD _b59.80 |
||
490 | 1 | _aChapman & Hall texts in statistical science series | |
500 | _aIncludes Index. | ||
505 | 0 | 0 |
_g1. _tBackground -- _g2. _tSingle-parameter models -- _g3. _tIntroduction to multiparameter models -- _g4. _tLarge-sample inference and connections to standard statistical methods -- _g5. _tHierarchical models -- _g6. _tModel checking and sensitivity analysis -- _g7. _tStudy design in Bayesian analysis -- _g8. _tIntroduction to regression models -- _g9. _tApproximations based on posterior modes -- _g10. _tPosterior simulation and integration -- _g11. _tMarkov chain simulation -- _g12. _tModels for robust inference and sensitivity analysis -- _g13. _tHierarchical linear models -- _g14. _tGeneralized linear models -- _g15. _tMultivariate models -- _g16. _tMixture models -- _g17. _tModels for missing data -- _g18. _tConcluding advice -- _tA Standard probability distributions -- _tB Outline of proofs of asymptotic theorems. |
520 | _aBayesian Data Analysis is a comprehensive treatment of the statistical analysis of data from a Bayesian perspective. Modern computational tools are emphasized, and inferences are typically obtained using computer simulations. | ||
520 | 8 | _aThe principles of Bayesian analysis are described with an emphasis on practical rather than theoretical issues, and illustrated using actual data. A variety of models are considered, including linear regression, hierarchical (random effects) models, robust models, generalized linear models and mixture models. | |
520 | 8 | _aTwo important and unique features of this text are thorough discussions of the methods for checking Bayesian models and the role of the design of data collection in influencing Bayesian statistical analysis. Issues of data collection, model formulation, computation, model checking and sensitivity analysis are all considered. The student or practising statistician will find that there is guidance on all aspects of Bayesian data analysis. | |
650 | 0 | _aBayesian statistical decision theory. | |
650 | 0 | _aMathematical statistics. | |
700 | 1 | _aGelman, Andrew. | |
830 | 0 | _aTexts in statistical science. | |
900 |
_aAUTH _bTOC |
||
942 |
_2ddc _cBK |
||
999 |
_c8540 _d8540 |