Library Logo
Ghallab, Yehya H.

Lab-on-a-chip : techniques, circuits, and biomedical applications / Yahya H. Ghallab, Wael Badawy - Norwood, MA : Artech House, c2010. - xv, 220 p. : ill. ; 24 cm. - Artech House integrated microsystems series . - Artech House integrated microsystems series. .

Includes bibliographic references and index.

Introduction to Lab-on-a-Chip -- History -- Parts and Components of Lab-on-a-Chip -- Electric and Magnetic Actuators -- Electrical Sensors -- Thermal Sensors -- Optical Sensors -- Microfluidic Chambers -- Applications of Lab-on-a-Chip -- Advantages and Disadvantages of Lab-on-a-Chip -- References -- Cell Structure, Properties, and Models -- Cell Structure -- Prokaryotic Cells -- Eukaryotic Cells -- Cell Components -- Electromechanics of Particles -- Single-Layer Model -- Double-Layer Model -- Electrogenic Cells -- Neurons -- Gated Ion Channels -- Action Potential -- References -- Cell Manipulator Fields -- Electric Field -- Uniform Electric Field (Electrophoresis) -- Nonuniform Electric Field (Dielectrophoresis) -- Magnetic Field -- Nonuniform Magnetic Field (Magnetophoresis) -- Magnetophoresis Force (MAP Force) -- References -- Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- Semiconductor Properties -- Intrinsic Semiconductors -- Extrinsic Semiconductor -- N-Type Doping -- P-Type Doping -- MOS Device Physics -- MOS Characteristics -- Modes of Operation -- Complementary Metal-Oxide Semiconductor (CMOS) Device -- Advantages of CMOS Technology -- References -- Sensing Techniques for Lab-on-a-Chip -- Optical Technique -- Fluorescent Labeling Technique -- Impedance Sensing Technique -- Magnetic Field Sensing Technique -- CMOS AC Electrokinetic Microparticle Analysis System -- Bioanalysis Platform -- Experimental Tests -- References -- CMOS-Based Lab-on-a-Chip -- PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- Actuation -- Impedance Sensing -- CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- CMOS Lab-on-a-Chip for Neuronal Activity Detection -- CMOS Lab-on-a-Chip for Cytometry Applications -- Flip-Chip Integration -- References -- CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- Design Flow -- Actuation -- Electrostatic Simulation -- Sensing -- The Electric Field Sensitive Field Effect Transistor (eFET) -- The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- DeFET Theory of Operation -- Modeling the DeFET -- A Simple DC Model -- SPICE DC Equivalent Circuit -- AC Equivalent Circuit -- The Effect of the DeFET on the Applied Electric Field Profile -- References -- Prototyping and Experimental Analysis -- Testing the DeFET -- The DC Response -- The AC (Frequency) Response -- Other Features of the DeFET -- Noise Analysis -- Noise Sources -- Noise Measurements -- The Effect of Temperature and Light on DeFET Performance -- Testing the Electric Field Imager -- The Response of the Imager Under Different Environments -- Testing the Imager with Biocells -- Packaging the Lab-on-a-Chip -- References -- Readout Circuits for Lab-on-a-Chip -- Current-Mode Circuits -- Operational Floating Current Conveyor (OFCC) -- A Simple Model -- OFCC with Feedback -- Current-Mode Instrumentation Amplifier -- Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- Current-Mode Instrumentation Amplifier Based on OFCC -- Experimental and Simulation Results of the Proposed CMIA -- The Differential Gain Measurements -- Common-Mode Rejection Ratio Measurements -- Other Features of the Proposed CMIA -- Noise Results -- Comparison Between Different CMIAs -- Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications -- Introduction -- CMWB Based on Operational Floating Current Conveyor -- A Linearization Technique Based on an Operational Floating Current Conveyor -- Experimental and Simulation Results -- The Differential Measurements -- Common-Mode Measurements -- Discussion -- References -- Current-Mode Readout Circuits for the pH Sensor -- Introduction -- Differential ISFET-Based pH Sensor -- ISFET-Based pH Sensor -- Differential ISFET Sensor -- pH Readout Circuit Based on an Operational Floating Current Conveyor -- Simulation Results -- pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- Simulation Results -- References. 1. 1.1. 1.2. 1.2.1. 1.2.2. 1.2.3. 1.2.4. 1.2.5. 1.3. 1.4. 2. 2.1. 2.1.1. 2.1.2. 2.1.3. 2.2. 2.2.1. 2.2.2. 2.3. 2.3.1. 2.3.2. 2.3.3. 3. 3.1. 3.1.1. 3.1.2. 3.2. 3.2.1. 3.2.2. 4. 4.1. 4.2. 4.3. 4.3.1. 4.3.2. 4.4. 4.5. 4.5.1. 4.6. 4.6.1. 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.5.1. 5.5.2. 6. 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 7. 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 7.8. 7.8.1. 7.8.2. 7.8.3. 7.9. 8. 8.1. 8.1.1. 8.1.2. 8.1.3. 8.2. 8.2.1. 8.2.2. 8.3. 8.4. 8.4.1. 8.4.2. 8.5. 9. 9.1. 9.2. 9.2.1. 9.2.2. 9.3. 9.3.1. 9.3.2. 9.4. 9.4.1. 9.4.2. 9.4.3. 9.4.4. 9.5. 9.6. 10. 10.1. 10.2. 10.3. 10.4. 10.4.1. 10.4.2. 10.5. 11. 11.1. 11.2. 11.2.1. 11.2.2. 11.3. 11.3.1. 11.4. 11.4.1.

1596934182 9781596934184

40018182495


Microelectromechanical systems.
Chemical laboratories--Electronic equipment.
Biomedical engineering.

TK7875 / .G43 2010

621.381 / GHL
Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login