Library Logo
Normal view MARC view ISBD view

Lab-on-a-chip : techniques, circuits, and biomedical applications /

by Ghallab, Yehya H; Badawy, Wael.
Material type: materialTypeLabelBookSeries: Artech House integrated microsystems series: Publisher: Norwood, MA : Artech House, c2010Description: xv, 220 p. : ill. ; 24 cm.ISBN: 1596934182; 9781596934184.Subject(s): Microelectromechanical systems | Chemical laboratories -- Electronic equipment | Biomedical engineering
Contents:
Introduction to Lab-on-a-Chip -- History -- Parts and Components of Lab-on-a-Chip -- Electric and Magnetic Actuators -- Electrical Sensors -- Thermal Sensors -- Optical Sensors -- Microfluidic Chambers -- Applications of Lab-on-a-Chip -- Advantages and Disadvantages of Lab-on-a-Chip -- References -- Cell Structure, Properties, and Models -- Cell Structure -- Prokaryotic Cells -- Eukaryotic Cells -- Cell Components -- Electromechanics of Particles -- Single-Layer Model -- Double-Layer Model -- Electrogenic Cells -- Neurons -- Gated Ion Channels -- Action Potential -- References -- Cell Manipulator Fields -- Electric Field -- Uniform Electric Field (Electrophoresis) -- Nonuniform Electric Field (Dielectrophoresis) -- Magnetic Field -- Nonuniform Magnetic Field (Magnetophoresis) -- Magnetophoresis Force (MAP Force) -- References -- Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- Semiconductor Properties -- Intrinsic Semiconductors -- Extrinsic Semiconductor -- N-Type Doping -- P-Type Doping -- MOS Device Physics -- MOS Characteristics -- Modes of Operation -- Complementary Metal-Oxide Semiconductor (CMOS) Device -- Advantages of CMOS Technology -- References -- Sensing Techniques for Lab-on-a-Chip -- Optical Technique -- Fluorescent Labeling Technique -- Impedance Sensing Technique -- Magnetic Field Sensing Technique -- CMOS AC Electrokinetic Microparticle Analysis System -- Bioanalysis Platform -- Experimental Tests -- References -- CMOS-Based Lab-on-a-Chip -- PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- Actuation -- Impedance Sensing -- CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- CMOS Lab-on-a-Chip for Neuronal Activity Detection -- CMOS Lab-on-a-Chip for Cytometry Applications -- Flip-Chip Integration -- References -- CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- Design Flow -- Actuation -- Electrostatic Simulation -- Sensing -- The Electric Field Sensitive Field Effect Transistor (eFET) -- The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- DeFET Theory of Operation -- Modeling the DeFET -- A Simple DC Model -- SPICE DC Equivalent Circuit -- AC Equivalent Circuit -- The Effect of the DeFET on the Applied Electric Field Profile -- References -- Prototyping and Experimental Analysis -- Testing the DeFET -- The DC Response -- The AC (Frequency) Response -- Other Features of the DeFET -- Noise Analysis -- Noise Sources -- Noise Measurements -- The Effect of Temperature and Light on DeFET Performance -- Testing the Electric Field Imager -- The Response of the Imager Under Different Environments -- Testing the Imager with Biocells -- Packaging the Lab-on-a-Chip -- References -- Readout Circuits for Lab-on-a-Chip -- Current-Mode Circuits -- Operational Floating Current Conveyor (OFCC) -- A Simple Model -- OFCC with Feedback -- Current-Mode Instrumentation Amplifier -- Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- Current-Mode Instrumentation Amplifier Based on OFCC -- Experimental and Simulation Results of the Proposed CMIA -- The Differential Gain Measurements -- Common-Mode Rejection Ratio Measurements -- Other Features of the Proposed CMIA -- Noise Results -- Comparison Between Different CMIAs -- Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications -- Introduction -- CMWB Based on Operational Floating Current Conveyor -- A Linearization Technique Based on an Operational Floating Current Conveyor -- Experimental and Simulation Results -- The Differential Measurements -- Common-Mode Measurements -- Discussion -- References -- Current-Mode Readout Circuits for the pH Sensor -- Introduction -- Differential ISFET-Based pH Sensor -- ISFET-Based pH Sensor -- Differential ISFET Sensor -- pH Readout Circuit Based on an Operational Floating Current Conveyor -- Simulation Results -- pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- Simulation Results -- References.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Books Books Dhaka University Science Library
General Stacks
Non Fiction 621.381 GHL (Browse shelf) Available 476415

Includes bibliographic references and index.

1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip for Neuronal Activity Detection -- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications -- 6.7. Flip-Chip Integration -- References -- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- 7.1. Design Flow -- 7.2. Actuation -- 7.3. Electrostatic Simulation -- 7.4. Sensing -- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET) -- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- 7.7. DeFET Theory of Operation -- 7.8. Modeling the DeFET -- 7.8.1. A Simple DC Model -- 7.8.2. SPICE DC Equivalent Circuit -- 7.8.3. AC Equivalent Circuit -- 7.9. The Effect of the DeFET on the Applied Electric Field Profile -- References -- 8. Prototyping and Experimental Analysis -- 8.1. Testing the DeFET -- 8.1.1. The DC Response -- 8.1.2. The AC (Frequency) Response -- 8.1.3. Other Features of the DeFET -- 8.2. Noise Analysis -- 8.2.1. Noise Sources -- 8.2.2. Noise Measurements -- 8.3. The Effect of Temperature and Light on DeFET Performance -- 8.4. Testing the Electric Field Imager -- 8.4.1. The Response of the Imager Under Different Environments -- 8.4.2. Testing the Imager with Biocells -- 8.5. Packaging the Lab-on-a-Chip -- References -- 9. Readout Circuits for Lab-on-a-Chip -- 9.1. Current-Mode Circuits -- 9.2. Operational Floating Current Conveyor (OFCC) -- 9.2.1. A Simple Model -- 9.2.2. OFCC with Feedback -- 9.3. Current-Mode Instrumentation Amplifier -- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC -- 9.4. Experimental and Simulation Results of the Proposed CMIA -- 9.4.1. The Differential Gain Measurements -- 9.4.2. Common-Mode Rejection Ratio Measurements -- 9.4.3. Other Features of the Proposed CMIA -- 9.4.4. Noise Results -- 9.5. Comparison Between Different CMIAs -- 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications -- 10.1. Introduction -- 10.2. CMWB Based on Operational Floating Current Conveyor -- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor -- 10.4. Experimental and Simulation Results -- 10.4.1. The Differential Measurements -- 10.4.2. Common-Mode Measurements -- 10.5. Discussion -- References -- 11. Current-Mode Readout Circuits for the pH Sensor -- 11.1. Introduction -- 11.2. Differential ISFET-Based pH Sensor -- 11.2.1. ISFET-Based pH Sensor -- 11.2.2. Differential ISFET Sensor -- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor -- 11.3.1. Simulation Results -- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- 11.4.1. Simulation Results -- References.

There are no comments for this item.

Log in to your account to post a comment.
Last Updated on September 15, 2019
© Dhaka University Library. All Rights Reserved|Staff Login