Lab-on-a-chip : techniques, circuits, and biomedical applications /
by Ghallab, Yehya H; Badawy, Wael.
Material type: BookSeries: Artech House integrated microsystems series: Publisher: Norwood, MA : Artech House, c2010Description: xv, 220 p. : ill. ; 24 cm.ISBN: 1596934182; 9781596934184.Subject(s): Microelectromechanical systems | Chemical laboratories -- Electronic equipment | Biomedical engineeringItem type | Current location | Collection | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|---|
Books | Dhaka University Science Library General Stacks | Non Fiction | 621.381 GHL (Browse shelf) | Available | 476415 |
Browsing Dhaka University Science Library Shelves , Shelving location: General Stacks , Collection code: Non Fiction Close shelf browser
No cover image available | No cover image available | No cover image available | No cover image available | |||||
621.381 GAP Pulse and digital electronics / | 621.381 GDS Solid-state power electronics / | 621.381 GDS Solid-state power electronics / | 621.381 GHL Lab-on-a-chip : | 621.381 GRA Applied electronics : | 621.381 GRA Applied electronics : | 621.381 GRA Applied electronics : |
Includes bibliographic references and index.
1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip for Neuronal Activity Detection -- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications -- 6.7. Flip-Chip Integration -- References -- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- 7.1. Design Flow -- 7.2. Actuation -- 7.3. Electrostatic Simulation -- 7.4. Sensing -- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET) -- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- 7.7. DeFET Theory of Operation -- 7.8. Modeling the DeFET -- 7.8.1. A Simple DC Model -- 7.8.2. SPICE DC Equivalent Circuit -- 7.8.3. AC Equivalent Circuit -- 7.9. The Effect of the DeFET on the Applied Electric Field Profile -- References -- 8. Prototyping and Experimental Analysis -- 8.1. Testing the DeFET -- 8.1.1. The DC Response -- 8.1.2. The AC (Frequency) Response -- 8.1.3. Other Features of the DeFET -- 8.2. Noise Analysis -- 8.2.1. Noise Sources -- 8.2.2. Noise Measurements -- 8.3. The Effect of Temperature and Light on DeFET Performance -- 8.4. Testing the Electric Field Imager -- 8.4.1. The Response of the Imager Under Different Environments -- 8.4.2. Testing the Imager with Biocells -- 8.5. Packaging the Lab-on-a-Chip -- References -- 9. Readout Circuits for Lab-on-a-Chip -- 9.1. Current-Mode Circuits -- 9.2. Operational Floating Current Conveyor (OFCC) -- 9.2.1. A Simple Model -- 9.2.2. OFCC with Feedback -- 9.3. Current-Mode Instrumentation Amplifier -- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC -- 9.4. Experimental and Simulation Results of the Proposed CMIA -- 9.4.1. The Differential Gain Measurements -- 9.4.2. Common-Mode Rejection Ratio Measurements -- 9.4.3. Other Features of the Proposed CMIA -- 9.4.4. Noise Results -- 9.5. Comparison Between Different CMIAs -- 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications -- 10.1. Introduction -- 10.2. CMWB Based on Operational Floating Current Conveyor -- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor -- 10.4. Experimental and Simulation Results -- 10.4.1. The Differential Measurements -- 10.4.2. Common-Mode Measurements -- 10.5. Discussion -- References -- 11. Current-Mode Readout Circuits for the pH Sensor -- 11.1. Introduction -- 11.2. Differential ISFET-Based pH Sensor -- 11.2.1. ISFET-Based pH Sensor -- 11.2.2. Differential ISFET Sensor -- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor -- 11.3.1. Simulation Results -- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- 11.4.1. Simulation Results -- References.
There are no comments for this item.